
HP C V7.3 for OpenVMS Alpha
Release Notes

April 3, 2007

© Copyright 2003, 2007 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession,
use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data
for Commercial Items are licensed to the U.S. Government under vendor’s
standard commercial license.

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should
be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

ii

Contents

1 Introduction . 1
2 Installation Notes . 1
2.1 Installation Requirements . 1
2.2 Header Files . 2
2.3 Startup Procedure . 2
3 Migrating from VAX C to HP C . 2
4 Installing and Using Multiple Compiler Versions 4
4.1 Displaying and selecting the compiler version 4
4.2 Side effects and restrictions on multiple versions 6
4.3 Installation Procedure Changes . 8
4.4 Sample installation fragment . 8
5 Enhancements and bug fixes . 9
5.1 Enhancements in V7.3 . 9
5.2 Enhancements in V7.1 . 10
5.3 Enhancements in V6.5 . 15
5.4 Enhancements in V6.4A . 19
5.5 Enhancements in V6.4 . 19
5.6 Enhancements in V6.2 . 31
5.7 Enhancements in V6.0 . 38
5.8 Enhancements in V5.7 . 42
5.9 Enhancements in V5.6 . 46
5.10 Enhancements in V5.5 . 48
5.11 Enhancements in V5.3 . 49
5.11.1 Changes to #include processing in V5.3 51
5.12 Enhancements in V5.2 . 52
5.12.1 Changes in DEC C RTL Header Files for V5.2 of DEC

C/C++ . 59
5.13 Enhancements in V5.0 . 64
5.14 Enhancements in V4.1 . 77
5.15 Enhancements since V1.3A . 78
5.16 Problems fixed in V7.3 . 82
5.17 Problems fixed in V7.1 . 83
5.18 Problems fixed in V6.5 . 90

iii

5.19 Problems fixed in V6.4A . 91
5.20 Problems fixed in V6.4 . 94
5.21 Problems fixed in V6.2A ECO kit 4 . 95
5.22 Problems fixed in V6.2A . 96
5.23 Problems fixed in V6.2 . 97
5.24 Problems fixed in V6.0 . 97
5.25 Problems fixed in V5.7 . 100
5.26 Problems fixed in V5.6 . 103
5.27 Problems fixed in V5.5 . 104
5.28 Problems fixed in V5.3 . 108
5.29 Problems fixed in V5.2 . 112
5.30 Problems fixed in V5.0 . 117
5.31 Problems fixed in V4.1 . 119
5.32 Problems fixed since V1.3A . 122
6 Support for STDARG.H and VARARGS.H 124
7 Debugger support . 125
8 64 bit support . 125
9 Restrictions and known bugs . 127

Tables

1 New DEC C V5.2 Header Files . 59

iv

1 Introduction
This document contains the release notes for HP C V7.3 for OpenVMS Alpha.
Note that most online documentation is being provided in html format as well
as in its traditional format. The html versions of manuals are provided along
with the bookreader versions on the documentation CDROM. The online help
files are also available in html format (help cc continues to work in its usual
way). The URL to access the online help with a local browser is given at the
start of the text-based help cc command. For additional information on the
compiler, see also:

• The HP C User’s Guide for OpenVMS systems

• Enter the command HELP CC

For additional information about the HP C language and its supported library
routines, see also:

• The HP C Language Reference Manual

• The HP C Run-Time Library Reference Manual for OpenVMS Systems

The release notes for the HP C Run Time Library are contained in the Run
Time Components for OpenVMS Alpha.

2 Installation Notes

2.1 Installation Requirements

HP C V7.3 requires OpenVMS Alpha V7.3-2 or higher.

Following are disk space requirements for installation of HP C for OpenVMS
Alpha, Block Cluster Size=1:

w/o optional with optional
documents documents

Disk space required for 150,000 blocks 250,000 blocks
installation:

Disk space required for 100,000 blocks 160,000 blocks
use (permanent):

For more information about installing the kit, refer to the HP C Installation
Guide accompanying these release notes.

1

2.2 Header Files
The installation kit will replace the DECC$RTLDEF.TLB in SYS$LIBRARY
unless it finds that the creation date of the file on this kit is earlier
than the creation date of the existing file on your system. Whenever
DECC$RTLDEF.TLB is replaced, the kit will also place reference copies of
the *.H forms of the headers in

• SYS$COMMON:[DECC$LIB.REFERENCE.DECC$RTLDEF]

• SYS$COMMON:[DECC$LIB.REFERENCE.SYS$STARLET_C]

The compiler does not normally search these reference areas, instead it
searches for and reads these headers directly from the text library files
SYS$LIBRARY:DECC$RTLDEF.TLB and SYS$LIBRARY:SYS$STARLET_
C.TLB. The *.H form of the headers are provided as a convenience to users
for reference purposes such as searching and browsing, which are not directly
supported for text libraries.

2.3 Startup Procedure
HP C for OpenVMS Alpha provides an optional startup procedure,
SYS$STARTUP:DECC$STARTUP.COM . This procedure may be invoked
by the system startup procedure to perform an install on the compiler and its
associated message file to improve compiler performance.

3 Migrating from VAX C to HP C
If you are migrating from VAX C to HP C, you might find the following
publication useful:

Compaq C Migration Guide for OpenVMS VAX Systems (Order number:
AA-Q5AVA-TE)

This guide is included with the Compaq C for OpenVMS VAX product, to which
it primarily applies. However, the following sections of this guide might also
prove helpful if you are porting VAX C code to HP C on an Alpha system:

• The following sections in Chapter 1—Migrating to the Compaq C Run-Time
Library:

Potential Migration Concerns and Solutions

Behavior Differences Between the VAX C RTL and Compaq C RTL

Compaq C RTL Obsolete Features

2

Debugging and the Compaq C RTL Object Library

Some subsections of C RTL Interoperability Concerns

• All of Chapter 2—Migrating to the Compaq C Compiler

For more information on Linking to the HP C RTL on OpenVMS Alpha
systems, see the section RTL Linking Options on Alpha Systems in Chapter
1 of the HP C Run-Time Library Reference Manual included in your product
documentation.

For more information on features helpful in migrating to HP C, see the HP C
User’s Guide included in your product documentation. Such features include:

• Command-line qualifiers:

/STANDARD
/WARNINGS
/EXTERN_MODEL
/[NO]SHARE_GLOBALS

• Preprocessor directives:

#pragma message
#pragma extern_model

The HP C User’s guide also contains a "Migrating from VAX C" appendix that
you might find useful. This appendix summarizes the features that distinguish
HP C for OpenVMS Systems from VAX C Version 3.2. You might also want to
read the Common Pitfalls appendix of the user’s guide.

Note that while the /STANDARD=VAXC qualifier enables a number of
language features and behaviors that aid in building programs developed with
the VAX C compiler, it is sometimes the case that differences between the two
compiler implementations can produce unexpected behavior differences in the
compiled program. Also note that the /STANDARD=VAXC qualifier only affects
the language dialect the compiler accepts. The HP C compiler has separate
qualifiers that control other environmental characteristics (e.g. /extern_model,
/share_globals, and /nested_include) that may affect the ease of building a VAX
C code base with HP C.

3

4 Installing and Using Multiple Compiler Versions
HP C V7.3 X7.3-103 provides limited support for installing and using multiple
versions of the compiler on the same node.

During installation of V7.3, if a V6.0 or higher version of the compiler is
already installed, you will be given the opportunity to preserve that compiler
rather than overwrite it. If you choose to preserve the currently-installed
compiler, you will then be given an opportunity to keep the currently-installed
compiler as the system default and install the new compiler as an alternate.
By default, preserving the currently installed system compiler is performed by
making it an alternate compiler, and installing the new compiler as the system
default.

The choice to use an alternate compiler instead of the installed system
compiler can be made by users, by running a command procedure that changes
the behavior of the cc command for the process that invokes it.

4.1 Displaying and selecting the compiler version
This kit provides two command procedures to display and control which C
compiler is used by a process.

• SYS$SYSTEM:DECC$SHOW_VERSIONS.COM

This procedure displays what C compilers are available on the system,
together with their version numbers. It also displays which compiler is the
default for the current process. An example:

@SYS$SYSTEM:DECC$SHOW_VERSIONS.COM

The following C compiler(s) are available
in SYS$SYSTEM:

Filename Version

DECC$COMPILER.EXE V6.4-005
DECC$COMPILER_V06_04-005.EXE V6.4-005
DECC$COMPILER_V06_04-006.EXE V6.4-006
DECC$COMPILER_V06_02-008.EXE V6.2-008 Process Default

• SYS$SYSTEM:DECC$SET_VERSION.COM

This procedure either sets up process logicals that point to an alternate
C compiler in SYS$SYSTEM and it issues a "$SET COMMAND" to a
corresponding cld file in SYS$SYSROOT:[SYSHLP.CC$ALPHA_CLD] to
establish the valid set of CC command line options, or else it removes the
process logicals and does an appropriate "$SET COMMAND" to revert back

4

to using the default system compiler. The procedure takes one argument,
a version number or "SYSTEM" (if no arguments are specified you will be
prompted). The SYSTEM argument selects the installed system compiler,
which is the one displayed with the filename DECC$COMPILER.EXE in
the output of DECC$SHOW_VERSIONS.COM. Alternate compilers are
shown in the output of DECC$SHOW_VERSIONS.COM with their version
number appended to the simple filename.

Alternate compilers must be located in SYS$SYSTEM and their names
must be based upon the compiler version number. For example the V6.2-
008 compiler is given the name: "SYS$SYSTEM:DECC$COMPILER_V06_
02-008.EXE".

To select a compiler, either pass a full ident string or enough of the ident
string to be unique. For example: to select the V6.2-008 compiler from our
list above we can pass V6.2-008 or V6.2 to the DECC$SET_VERSION.COM
routine. In this example, to select a 6.4 compiler, a full ident string
would be required to distinguish between the V6.4-005 and the V6.4-006
compilers.

$@SYS$SYSTEM:DECC$SET_VERSION.COM V6.2-008

$ SHOW LOGICAL DECC$COMPILER*

(LNM$PROCESS_TABLE)

"DECC$COMPILER" =
"SYS$SYSTEM:DECC$COMPILER_V06_02-008.EXE"

"DECC$COMPILER_MSG" =
"SYS$MESSAGE:DECC$COMPILER_MSG_V06_02-008.EXE"

$ @SYS$SSYTEM:DECC$SET_VERSION 6.4

The following 6.4 Compaq C compiler(s) are available
in SYS$SYSTEM:

Filename Version

DECC$COMPILER.EXE V6.4-005
DECC$COMPILER_V06_04-006.EXE V6.4-006
DECC$COMPILER_V06_04-005.EXE V6.4-005

Ambiguous version number, please be specify a
full version number, ex: V6.4-005

Version number : V6.4-005

$ SHOW LOGICAL DECC$COMPILER
"DECC$COMPILER" =
"SYS$SYSTEM:DECC$COMPILER_V06_04-005.EXE"

$ SHOW LOGICAL DECC$compiler_msg
"DECC$COMPILER_MSG" =
"SYS$MESSAGE:DECC$COMPILER_MSG_V06_04-005.EXE"

5

When this procedure is run in a process, subsequent CC commands invoke
the selected compiler version (until the procedure is run again). However,
when spawning a process, the DECC$SET_VERSION should be re-issued
by the spawned process in order to have the spawned process use the
correct values in the DCL command table when processing command line
qualifiers. Note that MMS spawns processes, so your MMS files should
be modified to include a DECC$SET_COMMAND if you are not using the
installed compiler when building. The process-level logicals and the "$SET
COMMAND" issued by DECC$SET_VERSION do not affect other processes
or users on the system.

4.2 Side effects and restrictions on multiple versions
When you install this kit, it provides the latest DECC$RTLDEF.TLB, and the
latest documentation, even if you select the option of having the new compiler
as the alternate compiler. The new DECC$RTLDEF.TLB does not adversely
impact a preexisting V6-based compiler because they are upwardly compatible.

Beginning with the V6.4A (ident V6.4-006) a set of CLD files for all
the officially released compilers from V6.0 onward will be placed in
SYS$SYSROOT:[SYSHLP.CC$ALPHA_CLD]. The V6.4A CLD file will be
inserted into the default system DCL table ONLY if you select the new
compiler as the installed compiler. This is in contrast to the original version
of V6.4 (ident V6.4-005) which unconditionally updated the DCL tables with
a V6.4 CLD file. This is also in contrast to what is stated in the installation
guide for V6.4 (The installation guide was not updated to reflect the changes in
V6.4A.)

Because of these differences in how CLD files are handled if you have installed
V6.4-005 you should reinstall the compiler version which you wish to be
the default compiler in order to get the default DCL tables to match your
default compiler, and then V6.4A (or a higher version number) may be
installed as an alternate compiler. If you are not able to reinstall an old
compiler kit, issue a DECC$SET_VERSION <version-num> as a workaround
to get the correct command tables. Alternatively, you may ask the system
administrator to update the system DCL tables with the correct CLD file from
SYS$SYSROOT:[SYSHLP.CC$ALPHA_CLD].

Please remember that if you spawn a process, your DCL tables are not
inherited by the spawned process, even though your logical tables are
inherited. If you do not re-run DECC$SET_COMMAND (or alternatively
issue a "SET COMMAND") your spawned process will use the default DCL
tables.

6

If you have mismatched CLD files you may see some of the following symptoms:

• If you are accidentally using an old compiler option with a newer CLD file,
you will not see an error when a new option is used with an older compiler
that does not support it. Instead, the option will be silently ignored. For
example, a V6.2 compiler should produce the following error when passed
the /first_include qualifier: "%DCL-W-IVQUAL, unrecognized qualifier"

$cc/ver
Compaq C V6.2-008 on OpenVMS Alpha G7.3

$cc /first_include foo.c ! /first_include new in 6.4
$!No complaint
$! use of decc$set_version in your spawed process fixes this
$ @SYS$SYSTEM:DECC$SET_VERSION V6.2
$cc /first_include foo.c
%DCL-W-IVQUAL, unrecognized qualifier -
check validity, spelling, and placement
\FIRST_INCLUDE\

• If you attempt to use a new compiler with an older CLD file, you will find
that the new compiler options are not accepted.

$ cc /ver
Compaq C V6.4-006 on OpenVMS Alpha G7.3

$ cc /first_include test.c
%DCL-W-IVQUAL, unrecognized qualifier -
check validity, spelling, and placement

$! use of decc$set_version in your spawed process fixes this
$ @SYS$SYSTEM:DECC$SET_VERSION V6.4
$ cc /first_include foo.c
$!No complaint

• Another type of error that you may see with mismatched CLD files is a
%CLI-F-SYNTAX error followed by a traceback. For example:

$ cc /arch=ev6_2 test.c
%CLI-F-SYNTAX, error parsing ’EV67’
-CLI-E-ENTNF, specified entity not found in command tables
%TRACE-F-TRACEBACK, symbolic stack dump follows
[Tracebacks deleted]

And because you must have the newest CLD file and header files in order
to use the newest compiler, if you run an older installation procedure to put
an older compiler back on your system, you must then re-run the V6.4A (or
higher) installation to get the newest files.

Note that there are two logical names involved in establishing the compiler
version - one for the compiler image and one for its message file. This version
of the compiler will issue a diagnostic if it is invoked with the wrong version
of the message file - but previous versions of the compiler do not detect

7

this situation. If you find that an older version of the compiler is issuing
diagnostics that don’t make sense for the code construct they’re attached to, or
if the message text is missing and only a message number is issued, check that
you have matched versions of the files designated by the two logicals using the
command "$ show logical decc$compiler*". The response should show matching
version-numbered files as in the example selecting the 6.2 compiler. Or if you
are using the system compiler, the response should be "%SHOW-S-NOTRAN,
no translation for logical name DECC$COMPILER*".

4.3 Installation Procedure Changes
When you install HP C V7.3 on a system that already has a 6.0 or higher
compiler installed, you will be given the opportunity to preserve the currently-
installed system compiler. To do this, answer yes to the following question
(the xxx will be replaced by the full version number of the existing system
compiler):

"Should the existing xxx system compiler be preserved [NO]:"

If you answer no, the installation will procede in the traditional manner,
overwriting the currently-installed system compiler.

If you answer yes, you will be asked an additional question. To get the
traditional behavior of installing the kit compiler as the system default, answer
NO to the question:

"Should this xxx system compiler remain the
default when cc is typed [NO]:"

Since you have previoiusly asked to preserve the existing system compiler,
that compiler is made an alternate compiler before installing the new system
compiler from the kit. If you answer yes to the question, the kit compiler will
be installed as an alternate compiler and the existing system default compiler
will remain the default.

4.4 Sample installation fragment
Beginning installation of CC V6.5 at 14:26

%VMSINSTAL-I-RESTORE, Restoring product save set A ...
%VMSINSTAL-I-RELMOVED, Product’s release notes moved...

Compaq C Version V6.5 for OpenVMS Alpha Systems

Copyright 2002 Compaq Information Technologies Group, L.P.

Compaq and the Compaq logo are trademarks of Compaq Information
Technologies Group, L.P. in the U.S. and/or other countries.

Confidential computer software. Valid license from Compaq required for
...etc...

8

A C V6.2-008 compiler was found on your system.
Type YES to keep this compiler on your system
either as the default system compiler, or as an
alternate compiler. Type NO to supersede C V6.2-008.

* Should the existing V6.2-008 system compiler
be preserved [NO]: yes

Type NO to have the compiler on this kit become the
default system compiler and to have the currently
installed compiler saved as an alternate compiler.
Type YES to keep the current system compiler as the
default compiler, and to have the compiler on this
kit available as an alternate compiler. Alternate
compilers can be invoked with the cc command after
invoking SYS$SYSTEM:DECC$SET_VERSION.COM passing
a version_number.

* Should this V6.2-008 system compiler remain the
default when cc is typed [NO]: no

Product: C
Producer: DEC
Version: 6.5
Release Date: 01-NOV-2001

5 Enhancements and bug fixes

5.1 Enhancements in V7.3
This version is largely a bug-fix release, the list of bugs fixed is given in
Section 5.16. There are only two new features, which are intended to make it
more command-line compatible with the corresponding C compiler version for
I64:

• The /CHECK qualifier now accepts optional keywords ALL and
NONE. This is for consistency with similar qualifiers and other VMS
compilers. It permits all checks except for named ones to be enabled,
without needing to specify the names of all supported checks. E.g.
/CHECK=(ALL,NOBOUNDS) enables all run-time checking code except for
bounds checking.

9

• The new I64-only /CHECK=ARG_INFO qualifier is recognized and ignored
(with optional QUALNA diagnostic). This is intended to help support
maintenance of common build scripts for Alpha and I64.

5.2 Enhancements in V7.1
This version contains the following new features and enhancements:

• New builtins for I64 compatibility.

The _ _CMP_STORE_* builtins are not fully functional on I64, and should
be considered deprecated. New builtin functions _ _CMP_SWAP*, _
InterlockedCompareExchange*, and _ _RETURN_ADDRESS have been
added for source compatibility with the I64 compiler. See <builtins.h> for
prototypes.

The Alpha architecture has the somewhat unusual concept of a "lock
region" in the load-locked/store-conditional paradigm used to implement
atomic update sequences. This concept is exposed by the _ _CMP_STORE_*
builtin functions, which have the ability to test a value from one location,
and store a new value into a different location in the same lock region
with guaranteed atomicity. On IA64, there is no lock region wider than
the location being updated, so the _ _CMP_STORE_* builtins can only be
implemented sensibly in the case that the source and destination addresses
are identical. That case can be implemented efficiently using the IA64
cmpxchg instructions.

To promote source compatibility for these kinds of low-level locks, the
_ _CMP_STORE_* builtins are considered deprecated. They continue to
work on Alpha, but on I64 they give an error unless the compiler can
determine that the source and destination addresses are the same, in
which case they give a warning. The most compatible replacements for
existing uses of _ _CMP_STORE_* are the new _ _CMP_SWAP_* builtins,
which have similar prototypes except that the destination parameter has
been removed since the source and destination are identical by definition.

But there are also new builtins with names and signatures matching those
provided by Intel’s IA64 compiler, _InterlockedCompareExchange*. Instead
of returning a status value, these return the value fetched. If it matches
the comparison value passed in, then the new value was stored; otherwise
the store did not take place and the code has the value that blocked the
store (this value cannot be determined when using either the _ _CMP_
SWAP_* or _ _CMP_STORE_* builtins). There are four variations of this

10

builtin, two for longword updates (*Exchange_*) and two for quadword
updates (*Exchange64_*). All return the old value as unsigned _ _int64,
and take the new value as unsigned _ _int64, regardless of whether the
location to update is longword or a quadword. Also note that the order
of the comparand and new_value parameters are reversed relative to the
_ _CMP_STORE_*/_ _CMP_SWAP_* builtins.

For each update size there are two variations, "_acq" and "_rel",
corresponding to IA64 "acquire" and "release" semantics for the cmpxchg
instruction. On Alpha, the *_acq forms generate a memory barrier AFTER
the conditional store, while the *_rel forms generate a memory barrier
BEFORE the conditional store. Note that the _ _CMP_SWAP_* builtins
also have "_ACQ" and "_REL" forms, even though the _ _CMP_STORE_*
builtins do not. The forms of _ _CMP_STORE_* and _ _CMP_SWAP_* with
neither "_ACQ" nor "_REL" suffix do not generate any memory barrier.

Finally, there is a _ _RETURN_ADDRESS builtin. On Alpha it returns the
value in R26 on entry to the current function, and on I64 it returns the
value in B0 on entry to the current function. This builtin cannot be used in
functions with non-standard linkage (#pragma linkage).

• #pragma linkage enhancements.

#pragma linkage is implicitly target-specific because it names machine
registers, and interacts with the calling standard on the target machine.
However, to assist in porting significant source code bases that used
the pragma without conditionalizing the use to Alpha, the I64 compiler
recognizes #pragma linkage, assumes it was intended for Alpha, and
attempts to map the Alpha machine registers to corresponding IA64
registers under the calling standard for OpenVMS I64. This was done
to ease porting, but ideally code using the pragma should have been
conditionally compiled for Alpha.

For use in new code, two variations of the pragma have been added,
#pragma linkage_alpha and #pragma linkage_ia64. These pragmas are
explicitly defined to be target-specific and are never mapped to a different
target - they are ignored with an informational message if encountered on
a different target machine than the one they specify.

11

Also, all three forms of the pragma recognize a new keyword,
"standard_linkage", which tells the compiler to use the normal linkage
conventions appropriate to the target platform, as specified in the calling
standard. When standard_linkage is specified, it must be the only
option in the parenthesized list following the linkage name. This can
be useful to confine conditional compilation to the pragmas that *define*
linkages, without requiring the corresponding use_linkage pragmas to be
conditionally compiled as well, as shown below.

Code that is written to use linkage pragmas as intended, treating them
strictly as target-specific without implicit mapping, might have a form like
this:

#if defined(__alpha)
#pragma linkage_alpha special1 = (__preserved(__r1,__r2))
#elif defined(__ia64)
#pragma linkage_ia64 special1 = (__preserved(__r9,__r28))
#else
#pragma message ("unknown target, assuming standard linkage")
#pragma linkage special1 = (__standard_linkage)
#endif

• New keyword TARGET for /MMS_DEPENDENCIES qualifier.

The keyword TARGET may be used with an optional value to specify the
name of the "target" in the generated dependency file output. By default,
the target name is the simple name of the primary source file, with the
file extension changed to .OBJ. If a value is provided for target, then
the simple filename and extension parsed from that string is used as the
name of the target. As a special case, if the value of TARGET is .OBJ,
then the target name will be the simple name and extension of the object
module produced by the compilation (which might be controlled by the /obj
qualifier). For example:

CC/MMS/OBJ=OUTPUT DISK:[DIR]T.C
produces an MMS file with
T.OBJ :

CC/MMS=(TARGET=DISK:[DIR]FOO)/OBJ=OUTPUT T.C
produces an MMS file with
FOO :

12

CC/MMS=(TARGET=.OBJ)/OBJ=DISK:[DIR]OUTPUT T.C
produces an MMS file with
OUTPUT.OBJ :

• Improved diagnostics for some C99 features including flexible array
member (a struct whose last member has an incomplete array type).

• Support enum types containing values beyond the range of type int. Under
/stand=relaxed, the compiler now supports this extension commonly used
in open source code.

• New diagnostics to report unreferenced labels, with unreferenced case
labels spelled the same as a visible enumeration constant reported by
default. Others can be enabled by the "questcode" or "unused" message
groups.

• Better diagnostic for a mismatched comment delimiter (i.e. the character
sequence "*/" appearing outside of a comment, string literal, or character
constant).

• Better, more complete and accurate information in the BADANSIALIAS
diagnostic.

• The /NAMES=LOWERCASE command line qualifier has no real practical
value, as the only treatments of casing for global names on VMS that make
sense are UPPERCASE and AS_IS. Therefore this variation is no longer
supported - using it produces a warning message, and global names are
processed as if /NAMES=AS_IS had been specified.

13

• The /STANDARD= command line qualifier now enforces the documented
behavior that there is no default keyword value supplied when the qualifier
is explicitly present. Although this qualifier was not intended to have a
default value when specified explicitly, the behavior of previous compilers
has been to treat /STANDARD the same as /STANDARD=ANSI89, which is
the strict C89 mode. Note this differs from the documented default when
/STANDARD is omitted altogether, which is /STANDARD=RELAXED.
Beginning with this version, specifying /STARDARD without supplying a
keyword will result in "%DCL-W-VALREQ" from DCL, and the compiler
will not be invoked.

• The /STANDARD= command line qualifier now accepts a new keyword
value, "LATEST". This keyword selects the strict mode of the latest version
of the C standard that has been implemented by the compiler. In V7.1, this
is equivalent to /STAND=C99.

• The STRCTPADDING diagnostic is an optional diagnostic to detect padding
inserted by the compiler between members of a struct to satisfy alignment
requirements. The purpose is to alert the user that changing the order of
the members could save space. A new optional message, STRCTPADEND,
has been added at user request to help detect possible size differences in
structs compiled on other platforms.

• Diagnostic messages reported against source code in a header file that is
actually contained within a text library module now provide the name of
the module in the library as well as the filespec for the library.

• New command line qualifier /ACCEPT=[NO]TRIGRAPHS. Controls
whether the compiler recognizes trigraphs, independently of the
/STANDARD qualifier, although the /STANDARD qualifier controls the de-
fault: COMMON and VAXC modes default to /ACCEPT=NOTRIGRAPHS,
all other modes default to /ACCEPT=TRIGRAPHS.

14

• A new option to the /POINTER_SIZE=LONG qualifier is available. When
/POINTER_SIZE=LONG=ARGV is specified, the argv argument to main
will be comprised of long pointers instead of short pointers. This can make
using long pointers easier because the pointer size of argv will match the
default pointer size for the compilation.

• A command procedure CC$PRODUCT_REMOVE has been added to the HP
C V7.1 kit for OpenVMS Alpha. This procedure allows you to remove the
HP C compiler product. It performs the equivalent of a PCSI PRODUCT
REMOVE command.

You are required to disable the product license before issuing the command
procedure to prevent a compilation from interfering with the delete process.

If the compiler has been installed as a shared image, the command
procedure will uninstall the image.

The command procedure takes no parameters and can be run as follows:

$ @SYS$SYSTEM:CC$PRODUCT_REMOVE

Do you wish to proceed with removing HP C <No>? Yes [Ret]

Enter "Yes" to remove the compiler from your system.

5.3 Enhancements in V6.5
This version contains the following new features and enhancements:

• Uses GEM BL48 backend, with best support for EV7 processors.

• Optional "_nm" suffix can be appended to any #pragma name to prevent
macro expansion on that pragma. This is the opposite of the "_m" suffix
introduced in V6.4.

• C99 _Pragma operator, which effectively allows pragma directives to be
produced by macro expansion. Note: when specified using this operator,
the tokens of the pragma, which appear together within a single string
literal in this form, are not macro expanded, regardless of any suffix.
But macro expansion can be accomplished if desired by using the
stringization operator to form the string. For specifics on this and the

15

other C99 features, the C99 standard is the best source - see Section 5.5 for
information on getting a copy.

• C99 constants for specific values of Infinity and NaN are supported (only
when using /float=ieee). The underlying implementation-specific identifiers
for these constants are:

__decc_float_ieee_Infinity
__decc_float_ieee_NaN
__decc_double_ieee_Infinity
__decc_double_ieee_NaN
__decc_long_double_ieee_Infinity
__decc_long_double_ieee_NaN

• C99 adjacent string concatenation. Wide and normal strings can be mixed,
in which case the normal strings get promoted to wide and a wide result is
produced.

• C99 Universal Character Names (UCNs) are accepted in identifiers, string
literals, and character constants (and their wide variations).

• New #pragma include_directory has been added. The syntax is:

#pragma include_directory <string-literal>

The effect of each include_directory pragma is as if its string argument
(including the quotes) were appended to the list of places to search that
is given its initial value by the /INCLUDE_DIRECTORY qualifier, except
that an empty string is not permitted in the pragma form. It is intended
to ease DCL command line length limitations when porting applications
from POSIX-like environments built with makefiles containing long lists of
-I options specifying directories to search for headers. Just as long lists of
macro definitions specified by the /DEFINE qualifier can be converted to
#define directives in a source file, long lists of places to search specified
by the /INCLUDE_DIRECTORY qualifier can be converted to #pragma
include_directory directives in a source file.

16

Note that the places to search as described in the help text for the
/INCLUDE_DIRECTORY qualifier includes the use of POSIX-style
pathnames, e.g. "/usr/base", and that this form can be very useful when
compiling code that contains POSIX-style relative pathnames in #include
directives. For example, #include <subdir/foo.h> can be combined with
a place to search such as "/usr/base" to form "/usr/base/subdir/foo.h", which
will be translated to the filespec "USR:[BASE.SUBDIR]FOO.H"

Note that this directive can only appear in the main source file, or in the
first file specified in the /FIRST_INCLUDE qualifier. It also must appear
before any #include directives.

• New keywords NOCRTL and RESTORE_CRTL have been added to
#pragma extern_prefix. These keywords control whether or not the
compiler will apply its default RTL prefixing to the names specified on the
pragma. The effect of NOCRTL is like that of the except= keyword of the
/prefix_library_entries command line qualifier. The effect of RESTORE_
CRTL is to undo the effect of a NOCRTL or a /prefix=except= on the
command line.

• /ANNOTATIONS command line qualifier

/ANNOTATIONS=(option[,...]) D=/NOANNOTATIONS
/[NO]ANNOTATIONS

Controls whether or not the source listing file is annotated with indications
of specific optimizations performed or, in some cases, not performed. These
annotations can be helpful in understanding the optimization process.

If annotations are requested (and the /LISTING qualifier appears on
the command line), the source listing section is shifted to the right and
annotation numbers are added to the left of source lines. These numbers
refer to brief descriptions which appear later in the source listing file.

Keywords selecting annotation of specific optimizations are:

• ALL - Selects all annotations. This output can be quite verbose, as it
includes detailed output for all annotations. For more concise output
for each kind of annotation, use /ANNOTATIONS=(ALL,NODETAIL),
or just /ANNOTATIONS with no keywords.

17

• [NO]CODE - Annotates machine code listing with descriptions of
special instructions used for prefetching, alignment, etc. Note that
/MACHINE_CODE must also be specified in order for this keyword to
have any visible effect.

• [NO]DETAIL - Provides additional level of annotation detail, where
available.

• [NO]FEEDBACK - Indicates use of profile-directed feedback
optimizations. Note that feedback optimizations are not implemented
on OpenVMS, so this keyword has no visible effect.

• [NO]INLINING - Indicates where code for a called procedure was
expanded inline.

• [NO]LOOP_TRANSFORMS - Indicates optimizations such as loop
reordering and code hoisting.

• [NO]LOOP_UNROLLING - Indicates where advanced loop nest
optimizations have been applied to improve cache performance (unroll
and jam, loop fusion, loop interchange, etc).

• [NO]PREFETCHING - Indicates where special instructions were used
to reduce memory latency.

• [NO]SHRINKWRAPPING - Indicates removal of code establishing
routine context when it is not needed.

• [NO]SOFTWARE_PIPELINING - Indicates where loops have been
scheduled to hide functional unit latency.

• [NO]TAIL_CALLS - Indicates an optimization where a call from routine
A to B can be replaced by a jump.

• [NO]TAIL_RECURSION - Indicates an optimization that eliminates
unnecessary routine context for a recursive call.

• NONE - is the same as /NOANNOTATIONS.

Specifying /ANNOTATIONS with no keywords is the same as specifying
/ANNOTATIONS=(ALL,NODETAIL)

• More aggressive /OPT=INLINE=ALL

18

The heuristics controlling inlining have been changed in this release to
provide overall better performance for the AUTOMATIC, SIZE, and SPEED
inlining controls. Because these improvements rely on improvements in the
compiler’s ability to perform inlining in more situations, a side effect is that
/OPT=INLINE=ALL has become more aggressive than it was in previous
releases. Consequently, programs that had previously been compiled
with /OPT=INLINE=ALL may now cause the compiler to exhaust virtual
memory or take an unacceptably long time to compile. /OPT=INLINE=ALL
was noted as not recommended for general use when it was introduced
in V5.0. That recommendation is even stronger in this release. Programs
that were measured as benefitting from /OPT=INLINE=ALL with a
previous release, but which no longer can be compiled within reasonable
resource limits with this release should generally be changed to use
/OPT=INLINE=SPEED.

5.4 Enhancements in V6.4A
This version does not provide new functionality over V6.4, but rather it provides
significant compiler bug fixes, usability improvements for multi-version support, and
changes to signal.h to ease its use with /pointer_size=long. See Section 5.19 for the bugs
fixed. It also uses a slightly newer version of the GEM backend, with miscellaneous
tuning changes.

5.5 Enhancements in V6.4
In addition to the support for installing multiple compiler versions, this
release provides most language-feature support for the new C99 standard,
ANSI/ISO/IEC 9899:1999. This was published by ISO in December, 1999 and
adopted as an ANSI standard in April, 2000.

Note that an official copy of the standard can be purchased and downloaded as
a PDF file for less than $20US from either NCITS at
http://www.techstreet.com/cgi-bin/detail?product_id=232462 or ANSI at
http://webstore.ansi.org/ansidocstore/product.asp?sku=ANSI%2FISO%2FIEC+9899%2D1999.

This release also adds new command line options and pragmas, a new version
of the GEM optimizing backend for Alpha, three new C99 header files, and
many new functions in the <math.h> header.

Note that some of the "new" run-time library support for C99 is available
in earlier versions of OpenVMS through extensions that had already been
implemented:

• many of the math routines in math.h that are conditionally excluded when
compiling in strict ANSI89 mode match functions that were added in the
C99 standard

19

• many library routines for complex data types (other than long double
complex) are available because they are the same as used for the Fortran
complex data types, and the Alpha calling standard makes them callable
from either language.

And although full support for all C99 library features is not anticipated until
an OpenVMS release after the "7.3" release currently in field test, the 7.3 field
test release does provide the new C99 math library functions that were not
already available as extensions, and it supports the long double complex data
type.

Important Note: The following three changes will impact existing code.

• The <math.h> header supplied on this kit declares prototypes for all of the
new C99 math functions, conditionalized to using Compaq C version 6.4 or
greater, and to a language mode that sets the macro _ _STDC_VERSION_ _
>= 199909. As described later, this macro is set in most language modes,
including the default "relaxed_ansi" mode. This is in concert with the
next change noted, involving prefixing of C99 entries. If your existing
code declares an external identifier that is the same as the identifier for
one of the many new math or complex functions added in C99, and your
program #includes <math.h> (or the new <complex.h>), then you will get
a compile-time error if your declaration is incompatible with the standard
declaration. If your code encounters a compile-time conflict with the
declarations in math.h, you should rename the identifier in your code, as
it will become a long-term burden to portability. Basically, the C standard
specifies that external names declared in standard headers are reserved
for that use regardless of whether or not the header is #included. Because
the platform will be supporting the C99 standard, and the default "relaxed"
language mode of the compiler will enable all of C99, we are forcing the
namespace issue at compile-time and with facility prefixing, even though
not all functions may be available at link time in currently-shipping
OpenVMS libraries.

• The new default of /PREFIX=C99_ENTRIES for the default language mode of
/STANDARD=RELAXED may cause unresolved references at link time if your
application provides its own implementation of library functions that have
been added to C99. Workarounds are to specify /PREFIX=ANSI_C89_ENTRIES
explicitly, rename your function (especially if it does not exactly implement
the behavior required by C99), or recompile both your function definition
and its callers. In the latter case, you will need to remove your own
implementation when the supported version of the new function becomes
available in the Compaq C RTL.

20

• The new rules for determining the type of an integer constant could lead
to some constants in your program being interpreted as having a signed
type when previous compiler versions gave them an unsigned type. This
could affect your program’s behavior in subtle ways. The new message
intconstsigned can be enabled to report constants in your source code
that are being treated differently under the C99 rules than they were in
previous releases. This message is also part of the new message group
newc99. If your program relied on unsigned treatment, the simple fix is
to add the correct suffix including a "U" or "u" to force the constant to
have the expected type. Such a change would be backward compatible and
portable.

The following specific enhancements were made:

• New C99 hexadecimal form of floating-point constants

This form of constant permits floating point values to be specified reliably
to the last bit of precision. It does not specify a bit pattern for the
representation. Instead it is interpreted much like an ordinary decimal
floating point constant except that the significand is written in hexadecimal
radix, and the exponent is expressed as a decimal integer indicating the
power of two by which to multiply the significand. A "P" instead of an "E"
separates the exponent from the significand. Thus, for example, 1/2 can
be written as 0x1P-1 or 0x.1P3. The C99 standard also adds printf/scanf
specifiers for this form of value, but that support will not be present in
OpenVMS run-time libraries until after the 7.3 release.

• New C99 header <stdbool.h>, and keyword _Bool

This header is intended to be used to access the new C99-specified boolean
type _Bool. It defines a macro spelled "bool" that expands to _Bool,
intended to be the preferred way to refer to the type. The type is not
recognized in VAXC, COMMON, or the strict ANSI89 mode. An object
of this type occupies one byte and is an unsigned integer, but its value
can only be either 0 or 1. It is permitted to use _Bool as the type for a
bit-field. When a value of any scalar type (any arithmetic type including
floating point and the new complex types, or any pointer type) is converted
to _Bool, the result is zero if the value would compare equal to 0 (e.g. if the
pointer is NULL), and otherwise the result is 1. The content of the header
is simply as follows:

21

#define bool _Bool
#define true 1
#define false 0
#define __bool_true_false_are_defined 1

• New C99 header <complex.h> and keyword _Complex

C99 introduces builtin complex data types similar to the Fortran type, in
all three precisions (float _Complex, double _Complex, and long double
_Complex). The header file <complex.h> defines a macro spelled "complex",
intended to be the preferred way to refer to the types. The details of this
type can be obtained from the C99 standard and the Language Reference
Manual, and by examining the content of the header. Basically the type
is similar to the Fortran type in its use. There is no special syntax for
constants - instead there is a new keyword "_Complex_I", which has a
complex value whose real part is zero and whose imaginary part is 1.0.
The header file defines a macro "I" that expands to "_Complex_I", and so
a complex constant with equal real and imaginary parts of 2.0 would be
written "2.0 + 2.0*I".

There are some known issues with complex types as follows:

• The complex data types are not available when using the /float=d_float
command line option. This is a permanent restriction.

• On current versions of OpenVMS, the complex types and functions
other than long double complex are available, but the long double
complex type is available only in the 7.3 field test.

• In this version of the compiler, the C99 functions cabs, cabsf, and cabsl
cannot be used. This is a temporary restriction. Functions named
cabs, cabsf, and cabsl have traditionally been declared in <math.h>
using a struct representation to hold two floating values. This is not
compatible with the calling standard for passing complex values, or
with the implementation of C99 complex data types. In this version of
the compiler, the traditional <math.h> declarations are preserved. If
you #include <complex.h> in the same compilation as <math.h>, then
if <math.h> occurs first you will get an informational message from
<complex.h> noting the incompatibility. If you #include <complex.h>
prior to the #include <math.h>, then there is no diagnostic, but if
you call these functions the generated code will not properly access

22

C99 versions of them. A workaround is to write your own separately-
compiled routines that take a pair of parameters of the corresponding
real floating point type, and return sqrt(p1*p1 + p2*p2). These routines
can then be called with a complex argument.

• New C99 header <tgmath.h>

This header provides "type-generic" names for 60 math functions that
provide operations for a number of different types, letting the actual
argument types select the function to call instead of requiring the user to
name the exact function and pass it appropriate arguments. E.g. where
C89 defined two different names for the sqare root function (sqrt and sqrtl
for double and long double arguments) and reserved a third name (sqrtf for
float arguments), C99 defines six names because it requires that the float
version be implemented and adds three new complex types (csqrt, csqrtl,
and csqrtf). These names are all declared in <math.h> and <complex.h>
and can be used in the traditional way. But by including this new header
(which internally includes both math.h and complex.h), a call to sqrt(x) will
be translated to call the appropriate function according to the type of x.
For details, see the standard, the documentation, and the contents of the
header.

Known issue:

• The type-generic implementation of the absolute value function (fabs)
is not available for complex types in this release. You must use the
type-specific names (cabs, cabsf, cabsl) instead.

• Language modes, /STANDARD=C99, message groups, /PREFIX

The compiler’s default language mode remains /STANDARD=RELAXED_
ANSI89, which accepts nearly all language extensions as well as standard
C89 and C99 features. It excludes only K&R ("common" mode), VAX C, and
Microsoft features that conflict with standard C. The /STANDARD=ANSI89
mode continues to implement strictly the 1990 ANSI/ISO C standard
(commonly called C89), issuing all required diagnostics as well as a number
of optional diagnostics that help detect source code constructs that are
not portable under the C89 standard (digraphs from the 1994 Amendment
are also recognized in this mode, even though they were not specified in

23

the 1990 standard). The ISOC94 keyword can still be added to any of the
modes (except VAXC) to predefine the macro _ _STDC_VERSION_ _, as
specified in Amendment 1 to the C89 standard.

A new mode, /STANDARD=C99, has been added that accepts just the C99
language without extensions, and diagnoses violations of the C99 standard.
Since C99 is a superset of Amendment 1, and since the default mode of
RELAXED_ANSI89 is a superset of C99, the macro _ _STDC_VERSION_ _
will now normally be defined with the C99-specified value of 199901L.
Only in the case of adding the ISOC94 keyword to the strict ANSI89, MIA,
or COMMON modes will the macro take on the Amendment 1 value of
199409L (in the absence of the ISOC94 keyword, these modes do not define
the macro at all).

Since the standard is quite new, use of C99 features is not really portable
in a practical sense yet. Also, the term "ANSI C" or "standard C" will be
ambiguous for some time to come (i.e. do you mean C89 or C99). To help
with this situation, the compiler has added three new message groups for
messages that report the use of features in the following categories:

noc89 - features not in C89
noc99 - features not in C99
newc99 - features that are new in C99.

The existing group, noansi, which is now somewhat ambiguous in name, is
retained as a synonym for noc89.

In recognition of the additional run-time library functions specified in C99,
the /PREFIX_LIBRARY_ENTRIES qualifier accepts a new keyword value,
C99_ENTRIES. This will enable DECC$ prefixing of all those external
names that are specified in C99 (these are a superset of the external
names prefixed under /PREFIX=ANSI_C89_ENTRIES and a subset of
those prefixed under /PREFIX=ALL_ENTRIES). The /STANDARD=C99
qualifier causes this option to default to /PREFIX=C99_ENTRIES. But
note that, as mentioned previously, new C99 run-time library functions will
not be available until OpenVMS Alpha releases after V7.3. The compiler
will prefix C99 entries based on their inclusion in the standard, not on the
availability of their implementations in the run-time library. So calling
functions introduced in C99 that are not yet implemented in the Compaq
C RTL will produce unresolved references to symbols prefixed by DECC$
when the program is linked.

24

• C99 changes to types of integer constants

The C99 standard introduces the type long long int (both signed and
unsigned) as a standard integer type whose range of values requires at
least 64 bits to represent. Although Compaq C on Alpha implemented the
type long long as an extension many releases ago, the compiler followed
the C89 rules for determining the type of an integer constant. Those rules
specified that an unsuffixed decimal integer with a value too large to be
represented in a signed long would be given the type unsigned long.
Compaq C followed this rule and gave a constant too large for signed long
the type unsigned long if it would fit, and only gave it a long long type if
the value was too large for unsigned long.

In standardizing the long long type, C99 regularized these rules and
made them extensible to longer types. In particular, unsuffixed decimal
integer constants are given the smallest signed integer type that will
hold the value (the minimum type is still int). If the value is larger than
the largest value of signed long long, then it is given the next larger
implementation-defined signed integer type (if there is one). Otherwise
the behavior is undefined. Since Compaq C does not implement a signed
integer type longer than long long, it will use the type unsigned long
long next, with a portability warning. The only portable way to specify
a decimal constant that will be given an unsigned type is to use a suffix
containing "u" or "U".

Compaq C will continue to use the C89 rules in VAXC, COMMON, and
strict ANSI89 modes (including MIA), but use the new C99 rules in all
other modes. The complete C99 rules are as follows:

The type of an integer constant is the first of the
corresponding list in which its value can be represented.

25

| | Octal or Hexadecimal
Suffix | Decimal Constant | Constant
-------------+-----------------------+-----------------------
none |int |int

|long int |unsigned int
|long long int |long int
| |unsigned long int
| |long long int
| |unsigned long long int

-------------+-----------------------+-----------------------
u or U |unsigned int |unsigned int

|unsigned long int |unsigned long int
|unsigned long long int |unsigned long long int

-------------+-----------------------+-----------------------
l or L |long int |long int

|long long int |unsigned long int
| |long long int
| |unsigned long long int

-------------+-----------------------+-----------------------
Both u or U |unsigned long int |unsigned long int
and l or L |unsigned long long int |unsigned long long int
-------------+-----------------------+-----------------------
ll or LL |long long int |long long int

| |unsigned long long int
-------------+-----------------------+-----------------------
Both u or U |unsigned long long int |unsigned long long int
and ll or LL | |
-------------+-----------------------+-----------------------

If an integer constant cannot be represented by any type in
its list, it may have an extended integer type, if the
extended integer type can represent its value. If all of
the types in the list for the constant are signed, the
extended integer type shall be signed. If all of the types
in the list for the constant are unsigned, the extended
integer type shall be unsigned. If the list contains both
signed and unsigned types, the extended integer type may be
signed or unsigned.

• #pragma names

This pragma offers the same kinds of control over the mapping of external
identifiers into object module symbols as does the command line qualifier
/NAMES, and it uses the same keywords (except that the "lowercase"
keyword is not supported). But as a pragma, the controls can be applied
selectively to regions of declarations. The pragma has a save/restore stack
that is also managed by #pragma environment, and so it is well-suited to

26

use in header files. The effect of "#pragma environment header_defaults"
is to set NAMES to "uppercase,truncated", which is the compiler default.

One important use for this feature is to make it easier to use command
line option /NAMES=AS_IS. Both the C99 standard and the C++ standard
require that external names be treated as case-sensitive, and 3rd party
libraries and Java native methods are starting to rely on case-sensitivity
(C99 requires a minimum of 31 characters significant, while C++ requires
all characters significant). Therefore we expect the use of /NAMES=AS_IS
to become much more widespread.

The Compaq C run-time library was implemented with all symbols
duplicated and spelled both in uppercase and lowercase to allow C
programs compiled with any of the /NAMES= settings to work. But
traditional practice on OpenVMS combined with compiler defaults of
/NAMES=UPPER has resulted in nearly all existing object libraries and
shared images to contain all uppercase names (both in references and
in definitions), even though C source code using these libraries typically
declares the names in lowercase or mixed case. Usually, the header files to
access these libraries contain macro definitions to replace lowercase names
by uppercase names to allow client programs to be compiled /NAMES=AS_
IS. But macro definitions are problematic because every external name has
to have a macro.

The new pragma allows header files to specify just once that the external
names they declare are to be uppercased in the object module, regardless
of the NAMES setting used in the rest of the compilation. The NAMES
setting in effect at the first declaration of an external name is the one that
takes effect, thus the setting specified in a header file will not be overridden
by a subsequent redeclaration in the user’s program (which might specify
a different NAMES setting). Note that the automatic Prologue/Epilogue
header file inclusion feature described in section 1.7.4 of the User’s Guide
(in connection with pointer_size pragmas) can also be used to specify the
NAMES setting for all headers in a given directory or text library, without
having to edit each header directly.

Syntax:

#pragma names <stack-option>
#pragma names <case-option>[, <length-option>]
#pragma names <length-option>[, <case-option>]

Where <stack-option> is one of:

27

save - save the current names state
restore - restore a saved names state

<case-option> is one of:

uppercase - uppercase external names
as_is - do not change case

and <length-option> is one of

truncated - truncate at 31 characters
shortened - shorten to 31 using CRC

• Change to #pragma optimize

An important change was made to the behavior of #pragma optimize,
which was introduced in V6.2 The pragma is no longer controlled by
#pragma environment. It still supports the save and restore keywords,
but its state is completely separate from the state managed by #pragma
environment. In addition, it has a new keyword, command_line. This
keyword causes the optimization settings to revert to what was in effect at
the start of the compilation, as specified by the CC command line qualifiers.

• New command line qualifier /FIRST_INCLUDE

This qualifier lists one or more header file specifications that are to
be included before the first line of the main source file. Each header
specification is treated as if it appeared within quotes on a #include
directive before the first line of source. The headers are included in the
order they are specified. This qualifier can be particularly useful to shorten
CC command lines with lengthy /DEFINE and/or /MESSAGE qualifiers, by
converting them to equivalent #define and #pragma message directives in a
file specified by /FIRST_INCLUDE.

Syntax:

/FIRST_INCLUDE=(file[,...])
/NOFIRST_INCLUDE (D)

• New "_m" suffix forces pragmas to expand macros

28

As specified in the Language Reference Manual, there is a fixed
"grandfathered" list of #pragma directives that always undergo macro
expansion in the preprocessor before being translated. No other #pragma
directives normally undergo macro expansion. But since there are
sometimes circumstances where macro expansion is needed on a particular
instance of a pragma, a general mechanism has been added such that
spelling the name of a #pragma directive with a trailing "_m" suffix will
cause that directive to undergo macro expansion. An example of use
follows in the next bullet item for #pragma assert non_zero. The suffix
is permitted on all pragmas, including those that are already specified as
undergoing macro expansion (in which case it has no effect).

• New non_zero keyword for #pragma assert

This new keyword allows you to assert that a particular constant-
expression must be non-zero at compile time, and supply a text string
to be output if the assertion proves false. The text string is output with a
warning message that includes the source text of the expression.

Syntax:
#pragma assert non_zero(<constant-expression>)

<string-literal>

Note that the constant-expression is a C language constant-expression, not
just a preprocessor #if expression. And while #pragma assert itself does
not perform macro expansion, the alternate form #pragma assert_m can be
used to cause macro expansion to take place, which is most often what is
desired, as in the second example below (since "offsetof" is a macro).

Example:
#pragma assert non_zero(sizeof(a) == 12) "wrong size a"
#pragma assert_m non_zero(offsetof(s,b)==4) "wrong offset b"

If the sizeof a is not 12, and the offset of member b in the struct named by
type b is not 4, the following diagnostics are output:

CC-W-ASSERTFAIL, The assertion "(sizeof(a) == 12)"
was not true. wrong size a.

CC-W-ASSERTFAIL, The assertion "(offsetof(s,b) == 4)"
was not true. wrong offset b.

• New #pragma unroll

29

This pragma controls the amount of loop unrolling performed on a
subsequent for loop.

Syntax:

#pragma unroll (unroll_factor)

Example:

#pragma unroll (1)
for (i=0; i<1000; i++) {foo(i);}

The unroll pragma directs the compiler to unroll the for loop that follows
it by the number of times specified by the unroll_factor argument. The
directive must be immediately followed by the for statement it is to
control, otherwise a warning is issued and the pragma is ignored. The
unroll_factor is an integer constant in the range from zero to 255. Using
a value of zero will cause the directive to be ignored and the compiler will
determine the number of times to unroll the loop in its normal way. Using
a value of one will prevent the loop from being unrolled.

• New use of static keyword in array bounds.

C99 permits the keyword "static" to be used within the outermost array
bound of a formal parameter in a prototype function declaration. The
effect is to assert to the compiler that at each call to the function, the
corresponding actual argument will provide access to at least as many
array elements as are specified in the declared array bound. Consider the
following two function definitions:

void foo(int a[1000]){ ... }
void bar(int b[static 1000]) { ... }

The declaration of foo is absolutely equivalent to one that declares "a" to be
"int *". When compiling the body of foo, the compiler has no information
about how many array elements may exist. The declaration of bar differs
in that it asserts to the compiler that it may assume that at least 1000
array elements exist and may be safely accessed. The intent is to provide a
hint to the optimizer about what can be safely pre-fetched.

• New type keyword _Imaginary

30

C99 reserves the keyword _Imaginary for use as a type-specifier in
conjunction with an experimental/optional feature called a "pure
imaginary" type, specified in informative Annex G. The overall intent
of the feature is to regularize the effects of "maximal IEEE" behaviors
on operations involving complex types. Annex F of C99 specifies a set
of "maximal IEEE" behaviors that give optional aspects of the IEEE
standard a binding in C semantics, and provides that a C implementation
should predefine the macro _ _STDC_IEC_559_ _ with a value of 1 if it
conforms to all of the specifications in Annex F (note that IEC 60559:1989,
IEC 559:1989, IEEE 754-1985, and IEEE 854-1987 are all essentially
equivalent for an implementation that uses binary radix). Compaq C does
not predefine _ _STDC_IEC_559_ _, and does not implement the _Imaginary
type that addresses the issues of using _ _STDC_IEC_559_ _ features on the
complex data types. In Compaq C, use of the _Imaginary keyword produces
a warning, which is resolved by treating it as an ordinary identifier.

5.6 Enhancements in V6.2
This release primarily contains a number of new language features from the
in-process revision to the C standard, C9X (expected to be C99), and from
the gcc compiler (to aid compatibility with source code from Linux systems).
It also has run-time performance enhancements (including tuning for the
EV6 processor and per-function optimization controls) and diagnostic message
improvements, as well as bug fixes and miscellaneous improvements.

The following specific enhancements were made:

• preprocessor expressions evaluated in 64 bits (C9X)

Arithmetic expressions evaluated within the preprocessor (i.e the
expression in a #if directive) are now evaluated in the type long long
(64 bits) instead of long (32 bits).

• unreachcode message no longer enabled by default

The unreachcode message, which detects unreachable code is no longer
enabled by default. If you wish the compiler to output this message, it
must be enabled using either a command line qualifier or a #pragma
message directive.

• diagnostic for unbalanced pragma state save/restore

The compiler now issues a diagnostic when a #pragma stack is not empty
at the end of a compilation (i.e. when the program issues a #pragma
<pragma-name> save directive without ever issuing a corresponding
#pragma <pragma-name> restore

• additional diagnostics to help locate unmatched braces

31

When a closing brace is omitted, the parser error is generally reported
against a location far from the point of the actual coding error. Additional
diagnostics now attempt to find which opening brace was not matched,
based on heuristic observation of the indentation style used in the rest of
the source code. In testing, these messages have proved quite accurate, but
if the source code is very inconsistent in this style, or uses an unusual style,
the messages may not be very effective. We would appreciate feedback on
this feature, particularly testcases where the diagnostic misidentified
which brace was unmatched.

• tuning for the EV6 processor and correction to new builtin functions.

The V6.0 compiler’s support for the EV6 processor was not well-tuned
and sometimes its EV56 tuning greatly outperforms its EV6 tuning when
running on an EV6 processor. This has been addressed (although some
programs may still run better with EV56 tuning, this should happen much
less often and with a much smaller margin of difference). Also, the builtin
functions _popcnt, _poppar, _leadz, and _trailz were corrected to avoid
generating new EV67 instructions on EV6 machines, and their return
types were changed from unsigned _ _int64 to _ _int64. The latter change
represents an ease-of-use improvement (unsigned operands can cause
surprising results for arithmetic expressions) and corrects an unintended
incompatibility with Tru64 UNIX.

• initial support for EV67 processor

EV67 is now accepted as a keyword for the /arch and /opt=tune qualifiers.
This enables generation of the bit-counting instructions for the _popcnt,
_poppar, _leadz, and _trailz builtin functions.

• per-function optimization control: #pragma optimize

#pragma optimize sets the optimization characteristics of function
definitions that follow the directive. It allows options to control
optimization that are normally set on the command line for the
entire compilation to be specified in the source file individually for
specific functions. Note that while the controls have effects similar to
corresponding command line controls, the final generated code will be
somewhat different. In particular, the optimization level controls specified
by the pragma do not affect the final instruction-level optimizations
and scheduling - those phases of optimization are controlled only by the
command-line optimization level.

32

Syntax:

#pragma optimize <options>

Where <options> is one of:
save, restore, <settings>

and <settings> is any combination of:
<level settings>
<unroll settings>
<ansi-alias settings>
<intrinsic settings>

<level settings> sets optimization level, of the form:
level=n

where n is from 0 to 5.

<unroll settings> controls loop unrolling, of the form:
unroll=n

where n is a non-negative integer.

<ansi-alias settings> controls ansi-alias assumptions:
ansi_alias=on or ansi_alias=off

<intrinsic settings> controls recognition of intrinsics:
intrinsics=on or intrinsics=off

Whitespace is optional between the setting clauses and
before and after the "=" in each clause. The pragma is
not subject to macro replacement.

An example would be:

#pragma optimize level=5 unroll=6

If the level=0 clause is present, it must be the only
clause present.

This directive must appear at file scope - outside any
function body.

Semantics:

1. The save and restore options save and restore the current optimization
state (level, unroll count, ansi-alias setting, and intrinsic setting).
This is similar to the other environment controls (message, member_
alignment...).

2. #pragma environment save and restore operations include the
optimization state.

3. #pragma environment command_line resets the optimization state to
that specified on the command line.

33

4. If the pragma does not specify a setting for one of the optimization
states, that state will remain unchanged.

5. When a function definition is encountered, it is compiled using the
optimization settings current at that point in the source.

6. When a function is compiled under level=0, the compiler will not inline
that function. In general, when functions are inlined, the inlined code
is optimized using the optimization controls in effect at the call site
instead of using the optimization controls specified for the function
being inlined.

7. When the VMS command line specifies /NOOPT (or /OPTIMIZE=LEVEL=0),
the #pragma has no effect (except that its arguments are still
validated).

• new keywords for /accept qualifier

New keywords for the /accept command line qualifier:

• [no]c99_keywords

Controls whether or not the new keywords being introduced in the C
standard that are in the C89 namespace for user identifiers (inline and
restrict) are accepted without double leading underscores.

• [no]gccinline

The gcc compiler implements an inline function qualifier for functions
with external linkage that gives similar capabilites to the C9X feature
described below, but the details of usage are somewhat different
(basically the combination of extern and inline keywords makes an
inline definition, instead of the exclusive use of the inline keyword
without the extern keyword). This option controls which variation of
the feature is implemented.

• extern inline functions (C9X and gcc)

A new keyword, inline, has been introduced which can be used as a
declaration specifier in the declaration of a function. With static functions,
this has the same effect as applying #pragma inline to the function.
When the specifier is applied to a function with external linkage, besides
suggesting to the compiler that calls within that translation unit be inlined,
there are additional rules that allow calls to the function also to be inlined
in other translation units or else called as an external function at the
compiler’s discretion:

• If the inline keyword is used on a function declaration with external
linkage, then the function must also be defined in the same translation
unit.

34

• If all of the file scope declarations of the function use the inline
keyword but do not use the extern keyword, then the definition in
that translation unit is called an inline definition, and no externally-
callable definition is produced by that compilation unit. Otherwise, the
compilation unit does produce an externally-callable definition.

• An inline definition must not contain a definition of a modifiable object
with static storage duration, and it must not refer to an identifier with
internal linkage. These restrictions do not apply to the externally-
callable definition.

• As usual, at most one compilation unit in an entire program can supply
an externally-callable definition of a given function.

• Any call to a function with external linkage may be translated as a
call to an external function, regardless of the presence of the inline
qualifier. It follows from this and the previous point that any function
with external linkage that is called must have exactly one externally-
callable definition among all the compilation units of an entire program.

• The address of an inline function with external linkage is always
computed as the address of the unique externally-callable definition,
never the address of an inline definition.

• A call to an inline function made through a pointer to the externally-
callable definition may still be inlined, or translated as a call to an
inline definition, if the compiler can determine the name of the function
whose address was stored in the pointer.

• intermixed declarations and code, "for" loop declarations (C9X and gcc)

The C++ language has always allowed these, and they are now being
added to C. The rules are the same as for C++. Within a compound
statement, statements and declarations may be freely interspersed. This
allows declarations to be placed nearer to their point of first use without
introducing additional nested compound statements.

And in the for statement, the first clause may be a declaration whose
scope includes the remaining clauses of the for header and the entire loop
body. This is normally used to declare and initialize a local loop control
variable, e.g.

for (int i=0; i<10; i++)
printf("%d\n", i);

• _ _func_ _ predeclared identifier (C9X and gcc)

35

Anywhere within the body of a function definition, code can assume that
there is visible an identifier named _ _func_ _ that is declared as a static
array of char initialized with the spelling of the function’s name. E.g a
function defined as

void foo(void) {printf("%s\n", __func__);}

will print "foo".

• compound literals (C9X and gcc)

A compound literal is a new form of expression that constructs the value of
an object, including objects of array, struct, or union type. In C89, passing
a struct value to a function typically involves declaring a named object of
the type, initializing its members, and passing that object to the function.
A compound literal is an unnamed object specified by syntax consisting of a
parenthesized type name (i.e. the same syntax as a cast operator) followed
by a brace-enclosed list of initializers. Note that the initializer list can use
the recently-introduced designator syntax.

E.g. to construct an array of 1000 ints that are all zero except for array
element 5, which is to have a value of 7, you can write: (int [1000]){[5] = 7}.

A compound literal object is an lvalue. The object it designates has
static storage duration if it occurs outside of all function definitions, and
otherwise has automatic storage duration associated with the nearest
enclosing block.

• comment introducers optionally detected within comments, to help find
unterminated comments

The new message "nestedcomment" can be enabled to report occurrences
of "/*" inside of a comment introduced by "/*". This often indicates that a
terminating "*/" was omitted, although certain coding practices may also
produce many occurrences that are harmless. The message is also enabled
by enabling the "level4", "unused", or "questcode" groups.

• _ _align synonym for _align (ANSI namespace)

The long-supported _align storage class modifier is in the namespace
reserved for users’ identifiers in some contexts under the C standard,
and so it could not be recognized as a keyword in strict ANSI mode
(/standard=ansi89). An alternate spelling with two leading underscores
(putting it in the namespace reserved to the C implementation) is now
recognized in all modes so that the feature can be used when compiling in
strict ANSI mode.

• _ _typeof_ _ unary operator (gcc)

36

The gcc compiler provides an operator named "_ _typeof_ _" that can be
used much like the standard C operator "sizeof", except that instead of
producing a value (the size of an expression or type) it produces a type
(the type of the expression or type that is its single operand). It can be
convenient to use in macros for generating declarations or casts that use
the same type as some expression or typename supplied as an argument to
the macro.

• pointer arithmetic on void and function pointers (gcc)

Pointer arithmetic on void* pointers or pointers to functions formerly
produced hard errors. The gcc compiler allows this, treating both as if they
were char* pointers. This behavior has been adopted, with an appropriate
warning instead of an error.

• string initializers optionally enclosed in parentheses (gcc)

In standard C, a string literal ordinarily has type char *. A special case is
made when a string literal is the initializer for an array of char, in which
case it is essentially treated as an array object that provides the values
(and, in the case of an incomplete array, the size) of the array of char being
initialized.

Also in standard C, a string literal enclosed in parentheses is not itself
a string literal, and so this special case would not apply - instead the
parenthesized literal would be treated as a single pointer of type char *,
which is not a valid initializer for an object of type array of char.

The gcc compiler allows a parenthesized string literal to initialize a char
array, and the construct commonly appears in Linux source code. So that
behavior has been adopted, with an appropriate warning.

• difference of addresses in same object are constants (gcc)

If the & operator is used to obtain the addresses of two lvalues within
the same object, and the lvalues are specified with integral constant
expressions, then the result depends only on the layout of the object, and
for practical purposes can be computed at compile time much like the
integral constant expressions that are required to be produced by sizeof
and offsetof.

E.g. for any array "a" of int, the value of &a[4] - &a[3] must be sizeof(int),
and sizeof(int) is an integral constant expression. But the C standard’s
specification of expressions that must be treated by the compiler as integral
constant expressions does not include use of the & operator, and so &a[4]
- &a[3] is not required to be treated as such, and Compaq C has not
previously done so. But the C standard also explicitly recognizes that
implementations may treat additional forms of expressions as constant

37

expressions, and gcc and other compilers do treat these cases as integral
constant expressions. Now Compaq C does as well.

• allow #pragma use_linkage to take typedef names as well as functions

#pragma use_linkage directive has been extended so that it can take either
a typedef name or a function name. If the typedef name is a function type,
then functions or pointers to functions declared with that type will have
the specified linkage. This allows programmers to invoke functions that
have a special linkage using a pointer to a function.

5.7 Enhancements in V6.0

• New command line qualifier /[NO]PROTOTYPES:

/[NO]PROTOTYPES=(FILE=<filename>,
[NO]IDENTIFIERS,
[NO]STATIC_FUNCTIONS)

default is /[NO]PROTOTYPES

Syntax Description:

/[NO]PROTOTYPES
Creates an output file containing function prototypes
for all global functions defined in the module which
is being compiled.

keywords:

IDENTIFIERS
negatable optional parameter, which indicates that

identififer names are to be included in the prototype
declarations that appear in the output file. The
default is NOIDENTIFIERS

STATIC_FUNCTIONS
negatable optional parameter, which indicates that
prototypes for static function definitions are to be
included in the output file. The default is
NOSTATIC_FUNCTIONS

FILE=<filename>
an optional parameter specifying the output file name.
When not specified the output file name will be
have the same defaults as listing file, except that
the .CH file extension is used instead of the .LIS
extension.

38

• New command line qualifier /ASSUME=[NO]WEAK_VOLATILE.
Specifying /ASSUME=WEAK_VOLATILE tells the compiler to generate
code for assignments to objects that are specified as volatile and smaller
than 32 bits without the load-locked/store-conditional sequences that
in general are required to assure volatile data integrity. This option is
intended for use in special hardware access situations, and should not
generally be used.

• New command line qualifier, /SHOW=MESSAGES. This qualifier adds a new
section to the listing file showing all of the compiler’s diagnostic messages
that are enabled at the start of the compilation, after the command line
has been processed. The listing shows the message identifer, the severity,
and the parameterized text of each enabled message, reflecting the effects
of the /standard and /warnings command line qualifiers (except that
severity-based suppression, /warnings=noinformationals or /nowarnings,
is not reflected). The /warnings=verbose qualifier causes this listing to be
expanded with the "Description" and "User Action" text following the text
for each enabled message.

• New command line qualifier, /CHECK=BOUNDS. This qualifier causes the
compiler to generate code to check the bounds of array-indexing expressions
at runtime, and raise an exception (%SYSTEM-F-SUBRNG, arithmetic
trap, subscript out of range) if the index is out of bounds. Note that the
C language defines the subscript expression a[i] to be equivalent to *(a+i),
relying on the implicit conversion of an array name to a pointer to the first
element of an array, and on the fact that adding an integer to a pointer
involves "scaling" the index by the size of the pointed-to object. So array
syntax can be used either with pointers or with the names of arrays. Array
bounds are only checked when an element is accessed using a declared
array name (using either array notation or pointer +/- integer notation).
In particular, the check is made at the point that the compiler processes
an add or subtract of an array name and an integer - the result of that
operation is a pointer, and so subsequent operations are not included in
the checking code. Also note that the C language considers computation of
the address one past the end of an array to be fully portable. Therefore,
expressions that appear to compute an address allow an extra element
at the end. It is only when an array name is used directly with array
subscript notation that the exact upper bound is checked. E.g.

39

{
int a[5]; // elements are 0..4, but you

// can take the address of a[5]
int *pa, i=6, j=-6;
pa = a + i; // trap, &a[6]
pa = a + i + j; // trap, &a[6] - 6
pa = a + (i + j); // no trap, &a[0]
pa = a + (i - 1); // no trap, &a[5]
j = a[i - 1]; // trap, a[5]
j = *(a + (i - 1)); // no trap, looks like &a[5]

}

• New informationals to report apparently unnecessary #include files
and CDD records. The most useful of these, UNUSEDTOP, reports
only headers explicitly #included at the top level in the compilation
unit that did not provide anything used by the rest of the compilation.
This message is enabled at level4. Other diagnostics to report on the
effects of #includes nested within other headers, and on CDD records, are
enabled at level5. All of these messages can be enabled by the message
group UNUSED. Unlike any other messages, these messages must be
enabled on the command line in order to be effective. The processing that
analyzes the dependencies on included files is signficant, and it must be
started before processing of the input files begins. Any #pragma message
directives within the source have no effect on these messages, their state is
determined only by processing the command line.

• Variable length arrays from the C9X review draft have been implemented.
This feature permits array objects with auto storage class, and array
typedefs declared at block scope, to have bounds that are runtime-computed
expressions. It also permits the declaration and definition of functions
whose parameters are arrays dimensioned by other parameters (similar
to Fortran assumed-shape arrays). The following example illustrates both
uses. Note that the definition of function sub() uses prototype syntax
and that the dimension parameters precede the array parameter that
uses them. In order to define a function with the dimension parameters
following the array parameter that uses them, it is necessary to write
the function definition using K&R syntax (since that syntax allows the
declarations of the types of the parameters to be written in a different
order from the parameters themselves). K&R function definitions should
generally be avoided.

40

#include <stdio.h>
#include <stdlib.h>

void sub(int, int, int[*][*]);

int main(int argc, char **argv)
{

if (argc != 3) {
printf("Specify two array bound arguments.\n");
exit(EXIT_FAILURE);

}
{

int dim1 = atoi(argv[1]);
int dim2 = atoi(argv[2]);
int a[dim1][dim2];
int i, j, k = 0;
for (i = 0; i < dim1; i++) {

for (j = 0; j < dim2; j++) {
a[i][j] = k++;

}
}
printf("dim1 = %d, dim2 = %d.",

sizeof(a)/sizeof(a[0]),
sizeof(a[0])/sizeof(int));

sub(dim1, dim2, a);
sub(dim2, dim1, a);

}
exit(EXIT_SUCCESS);

}

void sub(int sub1, int sub2, int suba[sub1][sub2])
{

int i, j, k = 0;
printf("\nIn sub, sub1 = %d, sub2 = %d.",

sub1, sub2);
for (i = 0; i < sub1; i++) {

printf("\n");
for (j = 0; j < sub2; j++) {

printf("%4d", suba[i][j]);
}

}
}

Finally, note that variable length arrays can often be used in place of the
non-standard alloca() [_ _ALLOCA()] intrinsic, an important difference
being that the storage allocated by _ _ALLOCA is not freed until return
from the function, while the storage allocated for a variable length array
is freed on exit from the block in which it is allocated. If _ _ALLOCA is
called within the scope of a variable length array declaration (including
within a block nested within the block containing a variable length array
declaration), then the storage allocated by that call to _ _ALLOCA is freed

41

at the same time that the storage for the variable length array is freed (i.e.
at block exit rather than function return). The compiler issues a warning
in such cases.

5.8 Enhancements in V5.7
This release contains a number of new features aimed primarily at ease
of use and programmer productivity, as well as performance and bug fix
improvements.

• New command line qualifier, /OPTIMIZE=INTRINSICS. In V5.6, the special
treatment of various standard runtime library functions was accomplished
solely by explicit source code in the standard header files. E.g. in
<string.h> there is: #define memcpy(_ _x, _ _y, _ _z) _ _MEMCPY(_ _x,
_ _y, _ _z). As a result, the compiler would not give special treatment to
calls to memcpy unless the compilation #included the standard header.
Similarly, the compiler did not do compile-time analysis of printf format
strings unless <stdio.h> was #included and the macro _INTRINSICS was
defined. Under this new option, extern functions whose names and call
signatures match those of standard library functions can be recognized
automatically as special (intrinsic) even if the corresponding header file is
not included. In addition, many more functions can be handled as intrinsics
than were previously available through the header files. The online help
for this qualifier contains the list of functions currently recognized. The
default is /OPTIMIZE=INTRINSICS.

• New command line qualifier /ASSUME=NOMATH_ERRNO. The C standard
requires that calls to certain library functions in <math.h> communicate
error information using errno. Since this behavior effectively means that
calls to such functions must be considered to have side-effects, the calls
cannot be optimized. This option asserts to the compiler that the program
does not depend on the setting of errno by those functions, allowing the
compiler to optimize calls to them. In practice, most production-quality C
programs that perform substantial floating point computations do not rely
on the setting of errno by math library functions. But because the setting
of errno by math functions is a traditional behavior that is also required
by the standard, and the compiler cannot reliably determine whether or
not the program actually depends on it, the compiler must refrain from
optimizing these math function calls unless the user explicitly allows it by
specifying this option. The online help for /OPTIMIZE=INTRINSICS lists the
functions affected.

42

• New command line qualifier /ASSUME=WHOLE_PROGRAM. This qualifier
asserts to the compiler that it is compiling the entire program at one time,
except for "well-behaved" library routines. This is normally useful only in
conjunction with /PLUS_LIST_OPTIMIZE. A well-behaved library routine is
one that does not use external linkage to read or write any global variables
that are visible to the compilation, and does not use external linkage to
access any function defined in the compilation. It is a slightly stronger
assertion than /ASSUME=NOPOINTERS_TO_GLOBALS.

• New command line qualifier EXACT_CDD_OFFSETS. This qualifier tells
the compiler to use the exact offsets as specified by #pragma dictionary
records, regardless of the current state of alignment controls. By default,
the offsets specified by CDD may be rounded up, subject to the alignment
controls in effect at the point of the #pragma.

• New command line qualifier /CHECK=POINTER_SIZE=INTEGER_CAST.
Generates a runtime check to verify that no bits are lost whenever a
64-bit pointer is cast to a 32-bit integer.

• New command line qualifier /ASSUME=NOCLEAN_PARAMETERS. This qualifier
tells the compiler that functions defined in this compilation may be called
from a separate compilation and passed improperly-prepared arguments.
In particular, functions defined to take 32-bit integer or pointer arguments
will have additional code generated to sign-extend the upper 32 bits of each
such argument. Note that the Calling Standard for Alpha requires that
32-bit values must be passed in 64-bit sign-extended form, even when the
argument is of an unsigned type. But type mismatches across separate
compilation units can cause this requirement to be violated, and use of this
option can help detect/correct the problem in order to aid the developer.
Ordinarily, this option should not be necessary and is not recommended for
production code.

• New command line qualifier /OPTIMIZE=PIPELINE. At optimization levels
of 2 or higher, this qualifier enables an optimization called "software
pipelining", in which certain loops may be reordered to start some of the
work of one iteration in an earlier iteration, and in some cases perform
data prefetching to reduce the impact of cache misses. This optimization is
included by default at level 5.

• Enhanced diagnostic message controls. The /WARNINGS command line
qualifier and its matching #pragma message have had a number of new
features added in an upwardly-compatible way. Refer to the online help for
/WARNINGS for specific usage information. Features include:

• Specify whether a message is issued only once per compilation, or at
each occurrence.

43

• Reduce the severity of any message that has a default severity of
informational or warning, or increase the severity of any message.
Reducing a warning to an informational can allow generation of a
"warning-free object module", without suppressing the diagnostic
altogether. Increasing the severity of an informational or warning to
an error can help enforce programming practices by causing specific
diagnostics to "break" a build.

• Control optional messages using a single numeric "importance level".
The "check" group of messages basically allowed enabling a large
number of additional messages, some useful, some not very useful
in many cases. Messages have now been grouped into 5 importance
levels, named level1-level6. The default is level3. The "check" group
is now treated as a synonym for level5. The "all" group is treated
as a synonym for level6. The level1 and level2 groups correspond to
"quiet" and slightly more "noisy" versions of Digital UNIX compilers,
respectively. Enabling a level enables optional messages at that level
and all lower levels. Disabling a level disables optional messages at
that level and all higher levels.

• Control optional messages using functional groups. The previous
functional groups (c_to_cxx, check, portable, all) have been retained,
and a number of new groups have been added. Many of the names
for the new functional groups correspond to groups recognized by the
"lint" utility on DIGITAL UNIX: ALIGNMENT, DEFUNCT, NOANSI,
OBSOLESCENT, OVERFLOW, PERFORMANCE, PREPROCESSOR,
QUESTCODE, RETURNCHECKS, UNINIT, UNUSED, CDD.

• /WARNINGS=VERBOSE adds explanatory help text following each
diagnostic message output.

Besides the new features, the entire set of compiler messages was reviewed
and updated. As a result, the exact set of messages reported by a default
compilation is somehwat different. Overall, the default level3 setting is
slightly quieter, particularly because the default mode of relaxed_ansi does
not report uses of language extensions. Also, the severity of many warning
messages has been reduced to informational. Finally, the Messages
subtopic for CC now contains useful additional information about each
message.

• New command line qualifier /SHOW=SYMBOLS. This will add a symbol table
map to the listing (if a listing is requested). This is similar, but not
identical, to the output from the VAX C compiler.

44

• New command line qualifier /SHOW=BRIEF. This qualifier is similar to the
new qualifier /SHOW=SYMBOLS, except that unreferenced symbols declared in
header files are omitted.

• New command line qualifier /CROSS_REFERENCE, or equivalently
/SHOW=CROSS_REFERENCE. This qualifier adds a list of line numbers at
which each listed symbol is referenced (if a listing is requested). If the
/SHOW qualifier is omitted, this qualifier causes the /SHOW=BRIEF symbols to
be listed. When appropriate, the line number designating a reference to a
symbol is annotated with a suffix indicating the way in which the symbol
was used on that line, as follows:

• = Assigned or initialized.

• & Address taken.

• () Function called.

• * Simple dereference.

• -> Member dereference.

• . Member selection (no indirection).

• [] Subscripted (i.e. using [] syntax).

• b Invoked as a builtin function.

• New command line qualifier /ACCEPT=[NO]feature. This qualifier tells the
compiler to accept (or reject) particular language features, regardless of
the setting of the /STANDARD qualifier. There are two features that can be
controlled in this way:

• VAXC_KEYWORDS. Specifying this feature tells the compiler to recognize
and process the following identifiers as keywords: _align, globaldef,
globalref, globalvalue, noshare, readonly, variant_struct, variant_
union. Specifying NOVAXC_KEYWORDS tells the compiler to treat these as
ordinary identifiers. The default is to recognize these as keywords in
all language modes other than strict ANSI and common modes.

• RESTRICT_KEYWORD. Specifying this feature tells the compiler to
recognize and process the C9X keyword restrict as a type qualifier
keyword. By default, in current language modes only the reserved-
namespace spelling _ _restrict is treated as a keyword.

• New command line qualifier /NAMES=SHORTENED. External symbol names
longer than 31 characters are, by default, truncated to 31 characters by the
compiler in order to conform to the linker limit, as they always have been.
This new option instructs the compiler to shorten the name without losing

45

all information about the characters that were removed. The shortened
name contains a CRC encoding of the characters removed, similar to way
that the C++ compiler treats its mangled names that very often exceeed
31 characters. This allows programs containing long external names that
are not unique within the first 31 characters to be linked successfully.
Naturally, if a program contains external names longer than 31 characters,
all of its modules must be compiled with the same setting of this qualifier
in order to link successfully. The default is /NAMES=TRUNCATED.

• New command line qualifier /REPOSITORY=dirspec. This qualifier is
only useful in conjunction with /NAMES=SHORTENED, and when the default
directory specification of [.CXX_REPOSITORY] is not acceptable. When the
compiler shortens a name under the /NAMES=SHORTENED option, it also
writes a mapping from the shortened name to the original full-length
name in the repository. The CXXDEMANGLE utility, which now also ships
with the C compiler, can be used to find the original name corresponding
to a shortened name. That utility also assumes that the shortened name
repository is located in [.CXX_REPOSITORY] unless a different directory is
explicitly specified. See the help for CXXDEMANGLE. An option to perform
compatible shortening on long names with extern "C" linkage is planned
for a future release of C++. Note that a shortened C name is formed using
a convention that will never match a C++ "mangled" name, so a single
repository can be used by all C and C++ compilations.

•

5.9 Enhancements in V5.6
This is primarily a maintenance release focused on bug fixes, performance,
usability and message improvements, and providing V7.1 runtime library
features on prior versions of VMS.

• Optimizer for Alpha now exploits the _ _restrict qualifier in limited ways.
Future releases will expand this kind of optimization.

• Optional compile-time diagnostics and optimizations for certain kinds of
format strings passed to the printf family of library functions.

If a preprocessor macro named "_INTRINSICS" is defined prior to inclusion
of the V5.6 header file stdio.h, the compiler will perform compile-time
analysis of format strings and arguments passed to printf, fprintf, and
sprintf when possible. When the format string passed to one of these
functions is an explicit compile-time-known string, this feature permits
the compiler to diagnose mismatches in number and type between the
%-specifiers in the format string and the arguments to be formatted. Most

46

such format strings will be converted to a more efficient run-time encoding
handled by new library routines. In addition, a number of special cases are
recognized which will cause the compiler either to generate calls directly
to lower-level library routines instead of printf, or to generate inline code,
avoiding the need to do any format decoding at runtime. For example, a
format such as "%s" passed to fprintf() can be converted to a call to fputs().
When passed to sprintf, it might be converted either to a call to strcpy or
to inline code to copy characters into the buffer. In versions of OpenVMS
through V7.1, the runtime support for this feature is provided only through
object modules placed in SYS$LIBRARY:STARLET.OLB by this kit.

• Command line qualifiers /ARCHITECTURE= and /OPTIMIZE=TUNE=
documented in online help, allow the compiler to exploit more fully features
of newer Alpha chips including byte/word memory access instructions.

• Message group C_TO_CXX. This message group contains an optional set of
diagnostics that report the use of a number of C language constructs that
are not compatible with, or have a slightly different meaning in, the C++
language. This group may be enabled explicitly either on the command line
(/WARN=ENABLE=C_TO_CXX) or by #pragma message enable (c_to_cxx).

• New runtime check, /CHECK=POINTER_SIZE=INTEGER_CAST. This
causes the compiler to generate code to check at runtime that casts from
64-bit pointer to 32-bit integer do not overflow. The expected behavior of
casts to integer types is to truncate the value silently. But in porting 32-bit
code to exploit 64-bit pointers, such casts can occur unintentionally and
produce runtime failures that are otherwise very difficult to analyze.

• New diagnostics to detect simple expressions with side effects that are
undefined in ANSI C. The C standard formalized defacto rules about side
effects in terms of sequence points. An expression that modifies the same
object more than once, or that modifies an object and fetches its value for a
purpose other than computing the modified value, has undefined behavior
unless there is an intervening sequence point. The compiler now warns
about such expressions (only for objects that are simple declared variables).

47

• Source listings now include statement level nesting. The annotation at the
left margin of the source listing now includes the statement nesting level
in effect at the end of that source line. The statement nesting level appears
as a simple integer before the listing line number. The block of a function
definition is level 1. Outside of function definitions, this field is blank.

5.10 Enhancements in V5.5
This is primarily a maintenance release focused on bug fixes, with very limited
new functionality.

• New command line qualifier /ASSUME=NOPOINTERS_TO_GLOBALS.

This qualifier tells the compiler it is safe to assume that global variables
have not had their addresses taken in a separate compilation. By default,
the compiler assumes that global variables may have had their addresses
taken in separately compiled modules, and that in general any pointer
dereference may be accessing the same memory as any global variable.
This is often a significant barrier to optimization. The /ANSI_ALIAS
command line qualifier allows some resolution based on data type, but
this new qualifier provides significant additional resolution and improved
optimization in many cases. Note that this qualifier does not tell the
compiler that the compilation never uses pointers to access global variables
(which is seldom true of real C programs). Instead, it tells the compiler
that any global variable accessed through a pointer in the compilation
must have had its address taken within that compilation. In combination
with /plus_list_optimize, several source modules can be treated as a single
compilation for the purpose of this analysis. Since runtime libraries such
as the CRTL do not take the addresses of global variables defined in user
programs, it is often possible to combine source modules into a single
compilation that allows this qualifier to be used effectively.

• New type qualifier "_ _restrict"

The ongoing work to revise the ANSI C language standard will likely
incorporate a new type qualifier keyword "restrict" (the existing ANSI
type qualifiers are "const" and "volatile"). This feature has been present
in the Cray C compiler for some time and is also being adopted by other
vendors. The type qualifier applies only to pointer types, and its basic
purpose is to assert to the compiler that memory accesses made through a
pointer declared with this type do not overlap with other memory accesses
within the scope of that pointer, permitting additional optimization. In this
release, the qualifier (with double leading underscores to avoid violating
the ANSI89 namespace) is recognized and its correct compile-time usage is
verified, but it does not yet trigger additional optimizations.

• Initial macros shown in listing file

48

At the end of the listing file there is now a section containing a list of all
macros in effect at the start of the compilation, along with their values.
This includes both those predefined by the compiler (except for ANSI-
mandated macros that cannot be undefined or redfined) and the result of
applying all /DEFINE and /UNDEFINE qualifiers.

5.11 Enhancements in V5.3

• New qualifier keyword value /STANDARD=MS.

This qualifier enables language compatibility features to accept some of
the language extensions present in 32-bit Microsoft C compilers (such
as the C compiler packaged with Visual C++) and causes the predefined
macros "_ _MS" and "_ _DECC_MODE_MS" to become defined with a
value of 1. It does not provide complete compatibility with a particular
version of Microsoft’s compiler, but a limited selection of relatively minor
extensions that can ease porting of C code developed under Microsoft C.
Examples include unnamed struct and unions (same syntax as unnamed
unions in C++, similar function to variant struct and union in VAX C), and
relaxation of pointer and integer comparisons. It does not include such
major extensions as structured exception handling or thread local storage.

• New qualifier keyword value /ASSUME=[NO]HEADER_TYPE_DEFAULT

The negated form of this value disables the compiler’s supplying of a
default file type extension of ".H" for source files included by the #include
preprocessing directive. This feature is primarily for compatibility with
the C++ compiler, where the rules for ANSI C++ header file specifications
conflict with the notion of having the compiler supply a file type. The
default is /ASSUME=HEADER_TYPE_DEFAULT, which enables the
compiler to supply the file type ".H" for included files as it always has. Also
see Section 5.11.1 for more information on changes to #include processing.

• Attribute controls for psects using #pragma extern_model

The extern_model pragma has been enhanced to allow explicit control over
most psect attributes, not just shr/noshr. The syntax is:

49

#pragma extern_model model_spec [attr[,attr]...]

where model_spec is one of:
common_block
relaxed_refdef
strict_refdef "name"
strict_refdef /* No attr specifications allowed. */
globalvalue /* No attr specifications allowed. */

attr is chosen from (at most one from each line):
gbl lcl /* Not allowed with relaxed_refdef */
shr noshr
wrt nowrt
pic nopic /* Not meaningful for Alpha */
ovr con
rel abs
exe noexe
vec novec
0 byte 1 word 2 long 3 quad 4 octa 16 page

A description of these attributes may be found in table 4-4 of the DEC C
User’s Guide for OpenVMS Systems, and more complete information on
each may be found in the OpenVMS Linker Utility Manual. The default
attributes are: noshr, rel, noexe, novec, nopic. For strict_refdef the default
is con, and for common_block and relaxed_refdef the default is ovr. The
default for wrt/nowrt is determined by the first variable placed in the psect.
If the variable has the const type qualifier (or the readonly modifier) the
psect will be set to nowrt, otherwise it is set to wrt.

Restrictions on setting attributes:

#pragma extern_model will not set psect attributes for variables declared
as tenative definitions in the relaxed_refdef model. A tentative definition is
one which does not contain an initializer. For example, consider the code:

#pragma extern_model relaxed_refdef long
int a;
int b = 6;
#pragma extern_model common_block long
int c;

Psect A will be given octaword alignment (the default) because a is a
tentative definition. Psect B will correctly be given longword alignment
because it is initialized and therefore not a tentative definition. Psect C
will also have longword alignment because it is declared in an extern_
model other than relaxed_refdef.

Also, alignment of word and byte may not currently be specified for any
extern model.

50

NOTE: These attributes are normally used by system programmers who
need to perform declarations normally done in macro. Most of these
attributes are not needed in normal C programs. Also note that the setting
of attributes is supported only through the #pragma mechanism, and not
through the /EXTERN_MODEL command line qualifier.

• New compiler-generated psect $READONLY_ADDR$

By default, previous versions of the compiler have placed all static-extent
const data in the psect named $READONLY$. When the const data
involved link-time addresses, this caused the entire $READONLY$ to
become non-shared. In V5.3, static-extent const data initialized with
link-time addresses is placed in a new psect named $READONLY_ADDR$,
leaving $READONLY$ sharable. For example, given the declarations:

static const int a = 5;
static const int * const b = &a;

variable a will be placed in the $READONLY$ psect because it is initialized
to a true compile-time constant value, while variable b will be placed in
$READONLY_ADDR$ because it is initialized to the address of a, which
may differ among different image activations.

5.11.1 Changes to #include processing in V5.3
To support processing of ‘‘prologue’’ and ‘‘epilogue’’ file inclusion, the V5.2
compiler introduced substantial changes to the processing of the #include
directive that allowed for increased code commonality between the OpenVMS
Alpha and VAX versions of the compiler. In V5.3, further changes have
been made to make the actual #include searching behavior identical for
the OpenVMS VAX and Alpha compilers, and to support new ANSI C++
requirements on header file naming conventions. The following are some of
the highlights of these modifications. For a complete description of #include
processing, see the discussion of file inclusion in the cc online help for the
/include_directory qualifier ($ help cc/include).

• New qualifer option, /assume=[no]header_type_default

This option can disable the default file type mechanism for header files.
Following VAX C, the DEC C compiler has traditionally supplied a default
file type of ".H" for filenames specified without any file type extension in a
#include directive using ANSI C syntax. Similarly, the DEC C++ compiler
has supplied a default file type of ".HXX". However, the emerging ANSI
standard for C++ now requires that, for example, #include <iostream>
refer to a different file than #include <iostream.hxx>. V5.3 of both DEC
C and DEC C++ support this capability through the /assume=noheader_
type_default qualifier option. Under this option, both DEC C and DEC

51

C++ supply a default file type of just "." for files named in standard-
syntax #include directives. Thus, for example, if a header file directory
contains two files named "STDIO." and "STDIO.H", the directive #include
<stdio> will cause DEC C to select "STDIO.H" by default. But under
/assume=noheader_type_default, "STDIO." will be selected. Besides
matching the ANSI C++ requirement, this behavior is also more compatible
with most other C compilers including UNIX and Windows/NT.

• Meaning of empty string in /INCLUDE_DIRECTORY

The UNIX convention of using -I without a pathname to disable searching
of the "standard places" is now fully supported by the /INCLUDE_
DIRECTORY qualifier. If an empty string occurs as any element in the
list of specifications supplied by this qualifier, the compiler does not search
any of its default directories, logical names, or text libraries and uses only
the specifications from the command line to find include files.

• ALPHA$LIBRARY system logical

DEC C now accesses default header files and libraries using the system
logical SYS$LIBRARY rather than ALPHA$LIBRARY. On an OpenVMS Alpha
system, the logical name ALPHA$LIBRARY is defined identically to
SYS$LIBRARY. The use of ALPHA$LIBRARY originated with internal
cross-development environments that are no longer supported. If you have
deliberately supplied a different definition of ALPHA$LIBRARY for any reason,
you will need to redefine SYS$LIBRARY instead in order to produce the same
effect on the compiler.

5.12 Enhancements in V5.2

• The command line qualifier /STANDARD=ISOC94 has been added.

This qualifier enables digraph processing and pre-defines the macro
_ _STDC_VERSION_ _ to the value 199409L. The macro _ _STDC_
VERSION_ _ is used in certain header files to enable the declaration
of additional wide character functions as specified in Amendment 1 to
ISO/ANSI C. (Amendment 1, which specifies digraphs, alternate spellings
for certain operators, and a number of new wide character functions, was
officially adopted by ISO in November of 1994.)

The meaning of /STANDARD with no keywords has been changed
from /STANDARD=ANSI89 to /STANDARD=(ANSI89, ISOC94), i.e.
strict conformance to the full new standard. The default mode of the
compiler (/NOSTANDARD) is still RELAXED_ANSI89. The meaning of
/STANDARD=ISOC94 is /STANDARD=(RELAXED_ANSI, ISOC94), i.e.
requesting just the additional features from the amendment builds on the

52

default mode. The ISOC94 keyword may be used with any of the other
keywords to the /STANDARD qualifier except VAXC.

• DEC C V5.2 has 64-bit addressing support. This support is controlled by
both the new command line qualifier /POINTER_SIZE, and by the new
pragmas pointer_size and required_pointer_size. In addition, the DEC C
RTL interfaces in the header files are conditionalized to provide 64-bit
support only when the /POINTER_SIZE qualifier is used on the command
line and when the the _ _VMS_VER pre-defined macro is greater than or
equal to 70000000 (i.e. VMS 7.0).

#pragma pointer_size (operand)

where the operand can be:
32 (or short) 32-bit pointers
64 (or long) 64-bit pointers
system_default 32-bit pointers (64 on Digital UNIX)
save remember the current pointer size
restore restore size to last remembered value

#pragma required_pointer_size (operand)

where the operand is the same as for pointer_size

#pragma required_pointer_size and #pragma pointer_size have the same
effect except that #pragma pointer_size is enabled ONLY when the
command line switch /POINTER_SIZE is used. When /POINTER_
SIZE does not appear on the command line, the pragma is ignored.
#pragma required_pointer_size always takes effect regardless off whether
/POINTER_SIZE has been specified. Please note that:

1. the pragmas only affect the meaning of the pointer-declarator ("*") in
declarations, casts and the sizeof operator.

2. The size of a pointer is the property of the type, and so it is bound in a
typedef declaration, but not in a preprocessor macro definition.

3. The size of the pointer produced by the "&" operator, or by an array
name or function name in a context where it is converted to an explicit
pointer, is 32 bits unless the "&" operator is applied to an object
designated by a deref of a pointer whose type is a 64-bit pointer type.

53

/[NO]POINTER_SIZE = {32 | 64 | long | short}

This command line qualifier has the following effects:

1. Enable processing of #pragma pointer_size

2. Sets the initial default pointer size before the first pragma is seen

3. Predefines preprocessor macro _ _INITIAL_POINTER_SIZE to 32 or 64.
In the absence of the /pointer_size qualifier, _ _INITIAL_POINTER_
SIZE is 0, allowing "#ifdef _ _INITIAL_POINTER_SIZE" to be used as
a macro to test whether of not the compiler supports 64-bit pointers.

4. For /pointer_size=64 (or long), the RTL name mapping table is changed
to select the 64-bit versions of malloc, calloc, and realloc (and other
routines sensitive to pointer size) by default. A given call may explicitly
name the 32-bit version or 64-bit version of these routines, but calls
that use the normal standard names will default to calling the 64-bit
version when the command line selects 64-bit pointers initially.

• /[NO]CHECK qualifier

A new qualifier to control generation of code to perform runtime checking
to help find for uninitialized variables and mixed pointer-size porblems.

/[NO]CHECK=([NO]UNINITIALIZED_VARIABLES,
[NO]POINTER_SIZE=(option,...))

Valid values of option are: [NO]ASSIGNMENT
[NO]CAST
[NO]PARAMETER
ALL
NONE

This qualifier causes the compiler to emit code which will assist in
identifying potentially incorrect code. This is a debugging aid.

When /CHECK=UNINITIALIZED_VARIABLES is specified the compiler
will emit code which initializes all automatic variables the value
0xfffa5a5afffa5a5a. This value is a floating NaN so it will cause a floating
point trap if used in IEEE mode. If used as a pointer, it will likely causes
an ACCVIO.

54

When /CHECK=POINTER_SIZE=(option,...) is specified the compiler will
emit code to check 32-bit pointer values to ensure that the values will fit
in a 32-bit pointer. If the value can not be represented by a 32-bit pointer,
the runtime code will signal SS$_RANGEERR (range error). The option
keywords which follow /POINTER_SIZE determine exactly which checks
should be generated:

[NO]ASSIGNMENT - Emit a check whenever a 64-bit pointer
is assigned to a 32-bit pointer (including use as
an actual argument).

[NO]CAST - Emit a check whenever a 64-bit pointer is cast
to a 32-bit pointer.

[NO]PARAMETER - Emit code that checks all formal parameters
at function start-up to make sure that all formal
parameters which are declared to be 32-bit pointers
have 32-bit values.

ALL - Emit all checks.
NONE - Emit no checks.

If /CHECK=POINTER_SIZE is specified,
the defaults are ASSIGNMENT,PARAMETER.

If /CHECK is specified, it will be the same as
/CHECK=(UNINITIALIZED_VARIABLES,POINTER_SIZE)

which is the same as
/CHECK=(UNINITIALIZED_VARIABLES,

POINTER_SIZE=(ASSIGNMENT,PARAMETER))

IF /CHECK=pointer_size=ALL is specified, it’s the same as
/CHECK=(POINTER_SIZE=(ASSIGNMENT,PARAMETER,CAST))

The following contrived program contains a number of pointer assignments.
The comment field after each line describes how to enable checking for each
assignment.

#pragma required_pointer_size long
int *a;
char *b;
typedef char * l_char_ptr;

#pragma required_pointer_size short
char *c;
int *d;

55

foo(int * e) // Check e if PARAMETER
{

d = a; // Check a if ASSIGNMENT
c = (char *) a; // Check a if CAST
c = (char *) d; // No checking ever
foo(a); // Check a if ASSIGNMENT
bar(a); // No checking ever - no prototype
b = (l_char_ptr) a; // No checking ever
c = (l_char_ptr) a; // Check a if ASSIGNMENT
b = (char *) a; // Check if CAST

}

• Implicit processing of prologue/epilogue files before and after each #include.

When the compiler encounters a #include preprocessing directive, it
first determines the location of the file or text library module to be
included. It then checks to see if one or both of the two following specially
named files or modules exist in the same location: _ _DECC_INCLUDE_
PROLOGUE.H, _ _DECC_INCLUDE_EPILOGUE.H (in the case of a text
library, the .H is stripped off). If they do, then the content of each is read
into memory. The text of the prologue file (if it exists) is processed JUST
BEFORE the text of the file specified by the #include, and the text of the
epilogue file (if it exists) is processed JUST AFTER the text of the file
specified by the #include. Subsequent #includes that refer to files from
the same location use the saved text from any prologue/epilogue file found
there. The prologue/epilogue files are otherwise treated as if they had been
#included explicitly, and #line directives are generated for them if /prepoc
output is produced, and they appear as dependencies if /mms_dependency
output is produced.

The "location" is the VMS directory containing the #included file or the text
library file containing the #included module. For this purpose, "directory"
means the result of using the $PARSE/$SEARCH system services with
concealed device name logicals translated. So if a #included file is found
through a concealed device logical that hides a search list, the check for
prologue/epilogue files is still specific to the individual directories making
up the search list.

The intended purpose of this feature is largely to aid in using header
files that are 64-bit "unaware" within an application being built to exploit
64-bit addressing. Current header files typically contain a section at the
top that uses pragmas to save the current state of things like member_
alignment and extern_model and then set them to the default values
for the system, and then at the end they restore the pragmas to their
previously-saved state. Mixed pointer sizes introduce another kind of state
that typically needs to be saved/set/restored in headers that define fixed
32-bit interfaces to libraries and data structures. DEC C V5.0 introduced

56

#pragma environment to allow headers to control all of the compiler’s state
(message suppression, extern_model, and member_alignment) with one
directive. The environment pragma now includes pointer_size as part of
the state it manipulates.

But for header files that have not yet been upgraded to use #pragma
environment, the /pointer_size=64 qualifier can be very difficult to use
effectively. The automatic #include prologue/epilogue mechanism allows
users to protect all of the header files within a single directory (or modules
within a single text library) just by copying two short files into each
directory or library that needs it, without having to edit each header file or
library module separately. Over time, headers should be modified either to
exploit 64-bit addressing (like the DEC C RTL), or to protect themselves
with #pragma environment. But to ease the transition (header files come
from many different places), this mechanism can be very effective. A
suggested content for those files is as follows:

__DECC_INCLUDE_PROLOGUE.H:

#ifdef __PRAGMA_ENVIRONMENT
#pragma environment save
#pragma environment header_defaults
#else
#error "__DECC_INCLUDE_PROLOGUE.H: \

This compiler does not support pragma environment"
#endif

__DECC_INCLUDE_EPILOGUE.H:

#ifdef __PRAGMA_ENVIRONMENT
#pragma __environment restore
#else
#error "__DECC_INCLUDE_EPILOGUE.H: \

This compiler does not support pragma environment"
#endif

• #pragma extern_prefix {SAVE | RESTORE | _ _save | _ _restore |
"prefix_to_use"}

This feature is for use by RTL header file developers only to prefix function
entry points with "prefix_to_use". Please note that the generated symbol
name is all uppercase. The functionality should match that of the extern_
prefix pragma in DEC C++

Note there is one known limitation with this feature: If the function is
implicitly declared (ie, no prototype) then it does not get prefixed.

• Atomic/Interlocked builtin functions

57

Several of the builtins provided in previous versions of the compiler had
some troublesome usability limitations. E.g. the _ _xxx_ATOMIC_yyy
family of builtins generate a memory barrier both before and after the
atomic update sequence, they always return a status value even though the
status is only useful for the variant forms that specify a retry count, and
they do not provide a mechanism for determining the old value (the value
that was in the location when the atomic update succeeded). Despite these
problems, they have been found useful in certain circumstances.

Instead of "improving" the previous builtins, they have all been retained as-
is for compatibility, and a new set of builtins has been added to address the
problems with the original set. For each builtin in the _ _xxx_ATOMIC_yyy
family, DEC C V5.2 provides a new pair of builtins named _ _ATOMIC_xxx_
yyy[_RETRY]. E.g. the original _ _ADD_ATOMIC_LONG is retained, and
two new builtins _ _ATOMIC_ADD_LONG and _ _ATOMIC_ADD_LONG_
RETRY have been added. Besides builtins corresponding to the previous
_ _xxx_ATOMIC* names, there are new builtins corresponding to the old
_ _TESTBIT* builtins and new _ _ATOMIC_EXCH_* (atomic exchange) that
had no counterpart in previous versions. All of these new builtins have the
following characteristics:

• No memory barriers are generated. If the application requires memory
barriers before and/or after the atomic update, they must be explicitly
coded (using inline assembly code or the _ _MB() builtin function).

• The return value from each function is the old value of the location
that was updated.

• The functions that do not end in _RETRY continue to try until they
succeed, so no status is returned.

• Those that end in _RETRY take two additional parameters specifying
the number of times to attempt the update, and the address of an
integer status variable to contain the completion status. Note that
while this specification makes for source code that suggests accesses
to the status variable would always involve a memory access (since
its address is passed to something that looks like a function), these
builtins are processed in a way that allows the status variable to
remain in a register.

There are also new builtins to implement efficient binary spinlocks:
_ _LOCK_LONG, _ _LOCK_LONG_RETRY, _ _UNLOCK_LONG. And
builtins to implement counted semaphores: _ _ACQUIRE_SEM_LONG,
_ _ACQUIRE_SEM_LONG_RETRY, _ _RELEASE_SEM_LONG. See the
header file builtins.h and the User’s Guide for more information.

58

5.12.1 Changes in DEC C RTL Header Files for V5.2 of DEC C/C++
The release notes in this section describe changes to the header files shipped
with DEC C V5.2 for OpenVMS Systems. These header files contain
enhancements and changes made to the DEC C Run-Time Library for
OpenVMS Systems.

New function prototypes and structure definitions which define new
functionality in the DEC C Run-Time Library correspond to new functionality
added to the DEC C Run-Time Library which is shipped with OpenVMS V7.0.

• New Header Files Added

A total of 20 new header files were added to the DEC C RTL suite of header
files. Header files were added for implementation of Amendment 1 of the
ISO C standard, compatibility with UNIX systems, and for introduction of
new functions. Table 1 lists those headers added for DEC C V5.2.

Table 1 New DEC C V5.2 Header Files

Header File Description

<dirent.h> Directory Manipulation Functions

<ftw.h> File Tree Walking

<if.h> Socket Packet Transport Mechanism

<if_arp.h> Socket Address Resolution Protocol

<ioctl.h> I/O Controls for Special Files

<iso646.h> Alternative Spelling for Language Tokens

<libgen.h> Filename Manipulation

<memory.h> String Handling

<mman.h> Mapping Pages of Memory

<nameser.h> Maximum Domain Name Size

<pwd.h> Password File Access Functions

<resolv.h> Resolver Configuration File

<resource.h> Declarations for Resource Operations

<strings.h> String Handling

(continued on next page)

59

Table 1 (Cont.) New DEC C V5.2 Header Files

Header File Description

<timers.h> Clock and Timer Functions

<times.h> File Access and Modifications Times Structure

<tzfile.h> Time Zone Information

<utsname.h> User Information

<wait.h> Declarations for Process Waiting

<wctype.h> Wide Character Classification and Mapping

• New Functions Defined In Header Files

OpenVMS V7.0 introduces many new DEC C RTL functions which have
been added to fulfill the request of application developers and to implement
those functions defined by ISO C Amendment 1. These functions have
been implemented on both OpenVMS Alpha V7.0 and OpenVMS VAX V7.0.
These functions are documented in the DEC C Run-time Library Reference
Manual for OpenVMS Systems.

basename() herror() seed48() sysconf()
bcmp() hostalias() seekdir() telldir()
bcopy() hstrerror() setenv() tempnam()
btowc() index() sethostent() towctrans()
bzero() initstate() setitimer() truncate()
closedir() ioctl() setnetent() tzset()
confstr() jrand48() setprotoent() ualarm()
dirname() lcong48() setservent() uname()
drand48() lrand48() setstate() unlink()
endhostent() mbrlen() sigaction() unsetenv()
endnetent() mbrtowc() sigaddset() usleep()
endprotoent() mbsinit() sigdelset() vfwprintf()
endservent() mbsrtowcs() sigemptyset() vswprintf()
erand48() memccpy() sigfillset() vwprintf()
ffs() mkstemp() sigismember() wait3()
fpathconf() mmap() siglongjmp() wait4()
ftruncate() mprotect() sigmask() waitpid()
ftw() mrand48() sigpending() wcrtomb()
fwide() msync() sigprocmask() wcsrtombs()
fwprintf() munmap() sigsetjmp() wcsstr()
fwscanf() nrand48() sigsuspend() wctob()
getclock() opendir() socket_fd() wctrans()
getdtablesize() pathconf() srand48() wmemchr()
gethostent() pclose() srandom() wmemcmp()
getitimer() popen() strcasecmp() wmemcpy()
getlogin() putenv() strdup() wmemmove()
getpagesize() random() strncasecmp() wmemset()

60

getpwnam() readdir() strsep() wprintf()
getpwuid() rewinddir() swab() wscanf()
getservent() rindex() swprintf()
gettimeofday() rmdir() swscanf()

The following functions are specific to OpenVMS Alpha V7.0. These
functions are the implementations specific to 64-bit pointers. (Alpha
only.)

_basename64() _mbsrtowcs64() _strpbrk64() _wcsncat64()
_bsearch64() _memccpy64() _strptime64() _wcsncpy64()
_calloc64() _memchr64() _strrchr64() _wcspbrk64()
_catgets64() _memcpy64() _strsep64() _wcsrchr64()
_ctermid64() _memmove64() _strstr64() _wcsrtombs64()
_cuserid64() _memset64() _strtod64() _wcsstr64()
_dirname64() _mktemp64() _strtok64() _wcstok64()
_fgetname64() _mmap64() _strtol64() _wcstol64()
_fgets64() _qsort64() _strtoll64() _wcstoul64()
_fgetws64() _realloc64() _strtoq64() _wcswcs64()
_gcvt64() _rindex64() _strtoul64() _wmemchr64()
_getcwd64() _strcat64() _strtoull64() _wmemcpy64()
_getname64() _strchr64() _strtouq64() _wmemmove64()
_gets64() _strcpy64() _tmpnam64() _wmemset64()
_index64() _strdup64() _wcscat64()
_longname64() _strncat64() _wcschr64()
_malloc64() _strncpy64() _wcscpy64()

While each of these functions are defined in the DEC C V5.2 header files,
those definitions are protected by using if _ _VMS_VER >= 70000000
conditional compilation.

• Usage of Feature-Test Macros

The header files shipped with DEC C V5.2 have been enhanced to support
feature test macros for selecting standards for APIs, multiple version
support and for compatibility with old versions of DEC C or OpenVMS.
Please see the DEC C Run-time Library Reference Manual, section 1.5
"Feature-Test Macros for Header-File Control", for a complete description
of the feature test macros that are available.

• Different Default Behavior After OpenVMS V7.0

The functions wait(), kill(), exit(), geteuid(), and getuid() have new default
behavior for programs which are recompiled under OpenVMS V7.0 or later.
To the retain the old behavior, use the _VMS_V6_SOURCE feature-test
macro, as described in the reference manual.

• Upgrade to Support 4.4BSD Sockets

61

As of OpenVMS V7.0, the socket definitions in the socket family of header
files has added support for 4.4BSD sockets. To instruct the header files to
use this support, define either _SOCKADDR_LEN or _XOPEN_SOURCE_
EXTENDED during the compilation.

The functions gethostbyaddr(), gethostbyname(), recvmsg(), sendmsg(),
accept(), bind(), connect(), getpeername(), getsockname(), recvfrom(),
and sendto() have a second implementation which uses a new sockaddr
structure defined in <socket.h>.

• Integration of Timezone Support

The DEC C RTL on OpenVMS V7.0 has added full support for Universal
Coordinated Time using a public domain timezone package. When
compiling on OpenVMS V7.0, the functions gmtime() and localtime() have
a second implementation which use extensions to the tm structure defined
in <time.h>. To retain the ANSI C definition of this structure, define either
_ANSI_C_SOURCE or _DECC_V4_SOURCE. Note that compiling with the
/standard=ansi qualifier implies _ANSI_C_SOURCE.

• Integration of ISO C Amendment 1 Behavior

The DEC C RTL on OpenVMS V7.0 has added full support for Amendment
1 of the ISO C Standard. When compiling on OpenVMS V7.0, the functions
wcfstime() and wcstok() have a second implementation which implement
the semantic changes required by this amendment. To retain the XPG4
semantics of these functions, define either _XOPEN_SOURCE or _DECC_
V4_SOURCE.

• Upgrade to Support 4.4BSD Curses

Document changes to curses.h...

Note

The default definitions used during compilation for OpenVMS Alpha
have been changed to _ _VMS_CURSES which is the same as
OpenVMS VAX. To restore the original default curses package, the
user must define _ _BSD44_CURSES.

• FILE Structure Changed to Increase Open File Limit

Changes were made to the FILE type definition in <stdio.h> to support
an extended open file limit in the DEC C RTL. As of OpenVMS V7.0, the
number of files which can be open simultaneously will be raised from 256
to 65535 on OpenVMS AXP and 2047 on OpenVMS VAX. This number is
based on the OpenVMS sysgen CHANNELCNT parameter which specifies

62

the number of permanent I/O channels available to the system. The
maximum CHANNELCNT on OpenVMS AXP is 65535. On OpenVMS VAX
it is 2047.

In order to support more than 256 open files, the field in the FILE type
containing the file descriptor "_file" had to be changed from a char type to
an int type.

The definition of the FILE type in stdio.h changed from:

typedef struct _iobuf {

int _cnt; // bytes remaining in buffer
char *_ptr; // I/O buffer ptr
char *_base; // buffer address
unsigned char _flag; // flags
unsigned char _file; // file descriptor number
unsigned char _pad1; // modifiable buffer flags
unsigned char _pad2; // pad for longword alignment

} *FILE;

to:

typedef struct _iobuf {

int _cnt; // bytes remaining in buffer
char *_ptr; // I/O buffer ptr
char *_base; // buffer address
unsigned char _flag; // flags
unsigned char _padfile; // old file descriptor numbe
unsigned char _pad1; // modifiable buffer flags
unsigned char _pad2; // pad for longword alignment
int _file; // file descriptor number

} *FILE;

This change was coded using the _ _VMS_VER macro. As such programs
compiled with a version of stdio.h containing support for an increased
open file limit can be linked with a version of the DEC C RTL which
either does or does not contain this support. Programs compiled with a
version of stdio.h providing the new FILE type definition which link on
earlier OpenVMS versions obviously not be able to make use of this new
functionality.

• Header <stdlib.h> No Longer Includes <types.h>

As part of feature test macro work, <stdlib.h> no longer includes <types.h>.
This will affect some DEC C V5.0 programs that included stdlib.h and
expected a type such as pid_t to be defined. The user must change their
source to explicitly include <types.h>.

63

5.13 Enhancements in V5.0
DEC C V5.0 contains the following enhancements:

• Change to the meaning of /standard=portable

The meaning of /standard=portable was previously documented as
putting the compiler in VAX C mode and enabling the portability group
of messages. The DEC C compiler for OpenVMS Alpha prior to V5.0
implemented this behavior, while the DEC C compiler for OpenVMS VAX
implemented this qualifier by putting the compiler in relaxed ANSI mode
and enabling the portability group. Feedback from users overwhelmingly
indicated a preference for the behavior of the VAX compiler. Therefore the
V5.0 compiler for OpenVMS Alpha has been changed to behave the same
as the VAX compiler, and the documentation for both platforms is being
updated to reflect this.

• Major upgrade to the preprocessor

The part of the compiler that implements preprocessing constructs has
undergone a major upgrade. In most ways, the effect of this change should
be invisible. Unless you have encountered problems with the preprocessor
in previous releases that are now fixed, you should not expect to see
much change except perhaps some additional compile-time improvement
if you use heavily redundant #includes, or if you use #pragma message
to control message reporting for preprocessor constructs. Because of
the nature of the changes made, errors and warnings that are detected
during preprocessing will typically be reported with different message text
and different message identifiers from previous releases (including the
previous field test compiler). If your code relies on the identifiers or text
for messages issued by the preprocessor, you will have to assess the new
messages and their identifiers to get equivalent behavior.

The general nature of the changes to the preprocessor are to improve its
reliability and its compatibility with traditional Unix C compilers, without
compromising its ANSI C adherence. In particular:

• Explicit .I file ouput

Much more attention has been given to the content of .I files produced
by the /preprocess_only qualifier, such that compiling a .I file should
more closely mimic the effect of compiling the original source. This
includes issues such as the following:

64

• Generation of whitespace to separate tokens only where necessary
to prevent accidental token pasting when the .I file is compiled.

• Generation of # num directives and blank lines to keep a better
correspondence to the original source.

• Processing of pragmas and directives (including builtins and
dictionary) such that compiling the .I file in the absence of the
original header files and/or CDD repository will produce the same
effect as compiling the original source in its own environment of
header files and repositories.

• #pragma message, standard, and nostandard are now also
respected under /preprocess_only, so that spurious diagnostics
are not produced when making a .I file.

• Token pasting

More natural treatment of token-pasting operators that do not produce
valid tokens: the pasting is simply ignored.

• Conditional preprocessing directives within macro argument lists

More flexible treatment of the appearance of #if, #ifdef, #ifndef, #else,
#elif, and #endif directives within the actual parameter list of a
function-like macro invocation that spans multiple lines: the directives
take effect. There is no ANSI-required behavior for such constructs,
and they can easily appear when a function is changed to a function-
like macro. Formerly an E-level diagnostic complaining about the
syntax of the directive was issued.

• Missing macro parameters

More natural treatment of function-like macro invocations with
missing actual parameters: each missing parameter is treated like an
object-like macro with an empty replacement list.

• Macro expansions in #include and #line

More complete treatment of preprocessing directives like #include
and #line, in the cases where a sequence of tokens requiring macro
expansion occurs, and the result of the macro expansion is to be
matched against one of the "fixed" forms.

• Error recovery

65

Better error recovery for preprocessor-generated diagnostics. In some
cases the severity of a similar condition diagnosed by the previous
version of the preprocessor has been reduced from an error to a
warning or informational because the repair is what would be expected
at that level. In particular, C preprocessors are sometimes applied
to source code that is not really C code - the expectation is that the
preprocessor would give at most a warning or informational, and the
detection of an error condition resulting from the fixup made by the
preprocessor can safely be left to the compiler’s syntactic and semantic
analysis phases.

• Macro expansions in #pragma

More usual treatment of #pragma directives: the tokens are not
subject to macro expansion. For pragmas that already have a well-
established and documented behavior under DEC C, macro expansion
is still performed. But for new DEC C pragmas and pragmas offering
compatibility with other C compilers, macro expansion is not performed
(since most other C compilers do not perform it). If an identifier
used as the name of a pragma matches the name of a pragma that
is defined not to have macro expansion performed, then no expansion
will be performed. But unless /standard=common is specified, if the
identifier is not the name of such a pragma, and it is the name of
a currently-defined macro, then that macro gets expanded and the
resulting token is compared to the following list of pragma names to
determine if the rest of the pragma tokens should be macro expanded.
This gives maximum compatibility with existing code, but allows the
general behavior to be brought more in line with common practice. The
pragmas that will continue to be subject to macro expansion are listed
below.

• _KAP

• standard

• nostandard

• member_alignment

• nomember_alignment

• dictionary

• inline

• noinline

66

• module

• message

• extern_model

• builtins

• linkage

• use_linkage

• define_template (C++ only)

• #pragma environment

New #pragma environment. This new pragma allows saving and restoring
the state of all pragmas for which the compiler supports a save/restore
stack. It has two additional keywords to specify a state that is consistent
with the needs of system header files, or to specify a state that is the
same as what was established by command line switches at the start
of compilation. The primary purpose is to allow the authors of header
files describing data structures that will be accessible to library code to
establish a consistent compilation environment in which their headers will
be compiled, without interfering with the compilation environment of the
user. The syntax is:

#pragma environment save
#pragma environment restore
#pragma environment header_defaults
#pragma environment command_line

The save and restore keywords cause every other pragma that accepts
save and restore keywords to perform a save or restore operation. The
header_defaults keyword sets the state of all those pragmas to what is
generally desirable in system header files. This corresponds to the state
the compiler would be in with no command line options specified and no
pragmas processed - except that #pragma nostandard is enabled. The
command_line keyword sets the state of all such pragmas to what was
specified by the command line options. See the Users’s Guide and help files
for a description of pragmas that accept save and restore keywords, and for
command line options that control behaviors that are also controllable by
pragmas.

• _ _unaligned type qualifier:

67

A new type qualifier called "_ _unaligned" has been introduced which can
be used in exactly the same contexts as the ANSI C "volatile" and "const"
type qualifiers. It can be used either on a declaration or in a cast to tell the
compiler specific places where it should not assume natural alignment on
a pointer dereference, without making it apply to all dereferences the way
the command line switch, /ASSUME=noaligned_objects would.

• DEC C V5.0 introduces support for in-line assembly code, commonly called
ASMs on UNIX platforms. The use of ASMs in DEC C on OpenVMS Alpha
is compatible with their use on the Digital UNIX platform. The opcodes
and register names/numbers are accepted in either upper or lower case
by DEC C on both platforms since conventions have traditionally differed
between them. Both platforms also accept both the R-number register
macro names common to VMS documentation and the so-called "software"
names common to the UNIX documentation.

Since ASMs are implemented with a function call syntax, you must include
a new header file, c_asm.h, containing prototypes for the three types of
ASMs, and a special pragma in order to use them.

The syntax (in the header file) looks like this:

__int64 asm(const char *, ...); /* integer ops */
float fasm(const char *, ...); /* float ops */
double dasm(const char *, ...); /* double ops */

#pragma intrinsic (asm)
#pragma intrinsic (fasm)
#pragma intrinsic (dasm)

where:

const char *
the first argument to the asm, fasm or dasm contains
the instruction(s) which are to be generated in-line
and the metalanguage which describes the interpretation
of the arguments. This must be a literal (compile-time)
string or a preprocessor macro expanding to a literal
string.

....
subsequent arguments are made available to the
instructions specified in the first argument
according to the calling standard conventions, with
the first of these arguments corresponding to the
first actual argument in the calling standard. I.e.
the character string specifying the instructions to
execute does not in itself count as an actual
argument.

68

The #pragma intrinsic directives notify the compiler that
the named functions (asm, dasm, and fasm) are not normal
user defined functions, and that the special asm processing
should be applied. As a result, a compilation that includes
c_asm.h cannot declare ordinary user functions with these
names. Other modules in the same program that do not
include the header file may declare functions with these
names, however, since asm processing generates inline code
within the calling module and never creates object module
references to these names.

There is a simple metalanguage for naming registers:

<metalanguage> : <register_number>
| <register_macro>
;

<register_number> : "$" number
;

<register_macro> : "%" <macro_sequence>
;

<macro_sequence> : number
| <register_name>
| "f" number | "F" number
| "r" number | "R" number
;

69

<register_name> : "v0" /* R0, F0 return value */
/* scratch registers */

| "t0" | "t1" | "t2" | "t3"
| "t4"
/* save registers */

| "s0" | "s1" | "s2" | "s3
| "s4"
| "s5" | "s6" | "s7" | "s8"
| "s9" | "s10" | "s11" | "s12"
| "s13"
/* arg registers, R16-R21 */

| "a0" | "a1" | "a2" | "a3"
| "a4" | "a5"
/* R26 is return addr */

| "RA" | "ra"
/* R27 is procedure value */

| "PV" | "pv"
/* R25 is arg info */

| "AI" | "ai"
/* R29 is frame pointer */

| "FP" | "fp"
/* R31 contains zero */

| "RZ" | "rz" | "zero"
/* R30 is stack pointer */

| "sp" | "SP" | "$sp" | "$SP"
;

The literal string which contains instructions, operands,
and metalanguage must follow the general form:

<string_content> : <instruc_seq>
| <string_content> ";" <instruc_seq>
;

<instruc_seq> : instruction_operand
| directive
;

Where an instruction_operand is generally recognized as
an assembly language instruction, separated by whitespace
from a sequence of comma-separated operands.

Note that it is possible to code multiple instruction
sequences into one literal string.

Please note that there are semantic rules associated with ASMs, as well as
syntax rules.

The first argument to the asm call is interpreted as the instructions to
be assembled in the metalanguage, and must be fully understood by the
compiler at compile-time. That is indirections, table lookups, structure
dereferences etc are NOT allowed.

70

The remaining arguments are treated like normal function arguments,
that is they are loaded into the argument registers according to the calling
standard, with the first argument following the string treated as the first
argument for calling standard purposes. For example:

In the following test, the 6 arguments are
loaded into arg registers %R16 through %R21
(equivalently %a0 through %a5 or just %0
through %5), and the result of each sub
expression is stored in the value return
register, %R0 (equivalently %v0).

if (asm("addq %R16, %R17, %R0;"
"addq %R18, %R0, %R0;"
"addq %R19, %R0, %R0;"
"addq %R20, %R0, %R0;"
"addq %R21, %R0, %R0;",

1,2,3,4,5,6) != 21){
error_cnt++;
printf ("Test failed\n");

}

With double precision operands the same
testcase would be written:

if (dasm("addt %F16, %F17, %F0;"
"addt %F18, %F0, %F0;"
"addt %F19, %F0, %F0;"
"addt %F20, %F0, %F0;"
"addt %F21, %F0, %F0;",
1.0,2.0,3.0,4.0,5.0,6.0) != 21.0){

error_cnt++;
printf ("Test failed\n");

}

Note that the following does not work, and produces a
compile-time warning stating that r2 is used before it is
set, because the arguments are loaded into the arg
registers (r16-r21), not r2. Similarly, the result of
the addq instruction would not be assigned to z because
the destination of the addq instruction is not the return
value register (%v0 or %R0).

z = asm("addq %r2, %a1 %r5",x=10,y=5);

The correct way of doing this is to specify an argument
register number in place of r2, and make sure the code
puts any result in the result register appropriate to
the type of the asm (%v0 for integer, %f0 for float and
double).

71

One exception to the above rule is that the return address
register (%ra or %r26) may be used in an asm without being
set. This is handled specially; it tells the compiler to
get the return address that was in %R26 at the time the
function containing the asm was invoked. Thus

z = asm("mov %ra, %v0")

puts the address to which the containing function will
return into z, regardless of whether or not register R26
still holds that address at this point in the code.

As noted, a result register must be specified in the metalanguage for
the result to appear in the expected place if the ASM is used as a value-
producing function. For instructions which do not take any argument and
which do not have a return type, simply leave out the arguments. For
example:

asm("MB");

• /NESTED_INCLUDE_DIRECTORY= (PRIMARY_FILE, INCLUDE_FILE,
NONE) has been enhanced.

Extended to accept the NONE keyword. This specifies that the compiler
skips the first step of processing #include "file.h" directives. It starts
looking for the included file in the /INCLUDE_DIRECTORY directories. It
does not start by looking in the directory containing the including file nor
in the directory containing the top level source file.

Default:
/NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE
(current behavior)

UNIX equivalent:
-nocurrent_include /NESTED_INCLUDE_DIRECTORY=NONE

• /MMS_DEPENDENCY[=(FILE[=filespec] | [NO]SYSTEM_INCLUDE_
FILES ,...)] /NOMMS_DEPENDENCY has been added.

The qualifier /MMS_DEPENDENCY corresponds tells the compiler to
produce a dependency file. The format of the dependency file is similar to
that on Digital UNIX.

72

object_file_name :<tab><source file name>

object_file_name :<tab><path to first include file>
object_file_name :<tab><path to second include file>

The FILE subqualifier specifies where to save the dependency file. The
default file extension for a dependency file is .mms. Other than using
the different default extension, this qualifier uses the same procedure as
/OBJECT and /LIST for determining the name of the output file.

The SYSTEM_INCLUDE_FILES subqualifier specifies whether or not to
include dependency information about system include files. That is, those
included with #include <filename>. The default is to include dependency
information about system include files.

Default: /NOMMS_DEPENDENCY

UNIX equivalents:
-MD /MMS_DEPENDENCY
-M /MMS_DEPENDENCY=(FILE=SYS$OUTPUT)
-MM /MMS_DEPENDENCY=(FILE=SYS$OUTPUT,-

NOSYSTEM_INCLUDE_FILES)
default /NOMMS_DEPENDENCY

• /[NO]LINE_DIRECTIVES has been added

This qualifier governs whether or not # ddd directives appear in preprocess
output files. Currently, there is no way to specify the form of the line
directives. DEC C always generates the "old-style" # ddd form, even in
ANSI modes.

Default: /LINE_DIRECTIVES

UNIX equivalents:
-P /NOLINE_DIRECTIVES
-E /LINE_DIRECTIVES

• /COMMENTS=(AS_IS,SPACE)/NOCOMMENTS has been added.

This qualifier governs whether or not comments appear in preprocess
output files. If they do not appear, it specifies what replaces them.

73

AS_IS specifies that the comment appears in the output file. SPACE
specifies that a single space replaces the comment in the output file.
/NOCOMMENTS specifies that nothing replaces the comment in the output
file. This may result in inadvertent token pasting.

The C and C++ preprocessor may replace a comment at the end of a line
or a line by itself with nothing, even if /COMMENTS=SPACE is specified.
Doing so cannot change the meaning of the program.

Default:
/NOCOMMENTS in the VAXC and COMMON modes of the
C compiler /COMMENTS=SPACE for C++ and the ANSI
modes of the C compiler. An explicit /COMMENTS
on the command line defaults to /COMMENTS=AS_IS.

UNIX equivalents:
-oldcomment /NOCOMMENTS
-C /COMMENTS=AS_IS
default /COMMENTS=SPACE

• /[NO]VERSION has been added.

This is a completely new qualifier intended to make it easier for users to
report which compiler they are using.

This qualifier causes the compiler to print out via printf the compiler
version and platform. The compiler version is the same as in the listing
file.

Defaults: /NOVERSION

UNIX equivalents
-V /VERSION
default /NOVERSION

• /CHECK=UNINITIALIZED_VARIABLES has been added.

This qualifier determines whether or not unitialized automatic variables
are initialized to the value 0xfffa5a5afffa5a5a. This value is a floating NaN
so will cause a floating point trap if used. If used as a pointer, it will likely
causes an ACCVIO. This is a debugging aid.

74

Defaults: /NOCHECK

UNIX equivalents:
-trapuv /CHECK=UNINITIALIZED_VARIABLES

• New Predefined Macros

There are new predefined macros _ _DECC_VER and _ _VMS_VER, which
map compiler version numbers and VMS version numbers respectively
into an unsigned long int. The compiler version number is extracted from
the compiler ident and the VMS version macro is obtained by calling
sys$getsyiw(SYI$_VERSION). These string values are then changed into
an integer in an implementation defined manner. It is intended that newer
versions of the compiler and VMS will always have larger values for these
macros. If for any reason the version string returned by sys$getsyiw(SYI$_
VERSION) or even the compiler’s own ident string cannot be analyzed,
then the corresponding predefined macro will be defined, but it will have a
value of 0. Please note that pre-5.0 compilers do not define these macros,
so it is possible to distinguish a pre-5.0 compiler from a compiler that is
given a bad version string by using #ifdefs or the defined operator.

/*__DECC_VER is not defined before V5.0
test for a compiler V5.1 or higher */

#ifdef __DECC_VER
#if (__DECC_VER >= 50100000)

/ * code */
#endif

#endif

/* test for VMS 6.2 or higher */
#ifdef __VMS_VER

#if __VMS_VER >= 60200000
/* code */

#endif
#endif

• Compile Time Performance Improvements

Some compile-time improvements have been made for V5.0. The most
notable improvement is that the preprocessor now is usually able to
determine if a particular #include file that has already been processed
once was guarded by the conventional "#ifndef FILE_SEEN, #define FILE_
SEEN, #endif" sequence. When the compiler detects this pattern of use the

75

first time a particular file is included, it remembers that fact as well as the
name of the macro. The next time the same file is included, the compiler
checks to see if the "FILE_SEEN" macro is still defined, and if so it does
not reopen and reread the file. Note that if the initial test is in the form
"#if !defined" instead of "#ifndef", then the pattern is not recognized. In a
listing file, #include directives that are skipped because of this processing
are marked with an "X" just as if the #include line itself were excluded.

• Run Time Performance Improvements

The compiler backend has been upgraded with general improvements to
the optimizer and with specific improvements to the inliner, listed below.

• Enhancements to inline optimization:

The heuristics for automatic inlining (/inline=automatic) have been
improved somewhat to select inlining opportunities that are more likely to
produce improved execution speed without increasing code size too much.

The keywords "size" and "speed" have been added to the command
line qualifier /OPTIMIZE=INLINE. The keyword "size" gives behavior
similar to the intent of the keyword "automatic" in previous compilers,
although it is somewhat more conservative in most cases ("automatic" is
now treated as a synonym for "size"). "size" inlines functions when the
compiler determines this it would improve run-time performance without
significantly increasing the size of the program. The keyword "speed"
performs more aggressive inlining for run-time performance, even when it
may significantly increase the size of the program.

/[NO]OPTIMIZE=INLINE={size | speed | automatic
| manual | none | all}

#pragma noinline may be used to prevent inlining of any particular
functions under the 3 compiler-selected forms of inlining. And #pragma
inline (or the _ _inline qualifier as used in C++) may be used to request
inlining of specific functions under the automatic or manual forms of
inlining. The "all" keyword is not generally recommended as it may often
increase both compilation resources and runtime size unacceptably.

• XPG4 Support

76

DEC C V5.0 supports the worldwide portability interfaces described in
the X/Open CAE Specifications: System Interfaces and Headers, Issue 4;
System Interfaces Definitions, Issue 4; and Commands and Utilities, Issue
4. These interfaces allow an application to be written for international
markets from common source code. This model of internationalization is
the same as found on many UNIX systems, including Digital UNIX.

Note: The new support for internationalization requires OpenVMS V6.2-
FT2 or later.

5.14 Enhancements in V4.1

• #dictionary support

DEC C V4.1 introduces support for inclusion of CDD records. The syntax
and features are the same as for DEC C V4.0 on OpenVMS/VAX, except
that V4.1 will also accept two new keywords, text1_to_array and text1_to_
char.

#[pragma] dictionary "pathname" [null_terminate]
[name(struct_name)]
[text1_to_array | text1_to_char]

pathname: a quoted pathname for a CDD record to be
extracted.

null_terminate: an optional keyword which adds an
additional byte for the null character
when a data type of text is extracted.

name(): an optional keyword to supply an alternate
tag name or declarator, struct_name, for the
outer level of a CDD structure.

text1_to_char: an optional keyword which forces the
CDD type text to be translated to char, rather
than array of char if the sizen is 1. This is
the default, unless null_terminate was
specified.

text1_to_array: an optional keyword which forces the
CDD type text to be translated to type array
of char, even when the size is 1. This is the
default when null_terminate is specified.

77

5.15 Enhancements since V1.3A

• Expanded IEEE support

The /IEEE_MODE switch allows users to control the way IEEE exceptional
values are generated and handled.

/IEEE_MODE=
FAST (default)
UNDERFLOW_TO_ZERO
DENORM_RESULTS
INEXACT

FAST
During program execution, only finite values
(no infinities, NaNs, or denorms) are created.
Exceptional conditions, such as floating point
overflow and divide by zero, are fatal.

UNDERFLOW_TO_ZERO
Generate infinities and NaNs. Flush denorms
and underflow to zero without exceptions.
Only modules containing main() are affected
by this switch. Modules not containing
main() compiled with this switch default
to DENORM_RESULTS.

DENORM_RESULTS
Generate infinities, NaNs and denorms. Do not
trap on inexact.

INEXACT
Generate infinities, NaNs and denorms. Do
trap on inexact. This is the slowest mode of
IEEE support, and should only by used if
inexact trapping is absolutely required.

• Enhanced floating point rounding support DEC C V4.1 introduces the
/ROUNDING_MODE switch to allow users to specify how IEEE floating
point values should be rounded.

78

/ROUNDING_MODE=NEAREST (default)
DYNAMIC
MINUS_INFINITY
CHOPPED

/ROUNDING_MODE lets the user specify which of the
above four rounding modes will be employed (if
/FLOAT=IEEE_FLOAT has also been specified).

Note that when either /FLOAT=G_FLOAT (the default) or D_FLOAT have
been specified, the only allowable rounding mode is NEAREST.

• 128 bit floating point support

/L_DOUBLE_SIZE=128 (default)
64

DEC C V4.1 supports "long double" as a 128 bit software emulated type,
x_float. With previous compilers, "long double" was synonymous with
"double" . This is no longer the case.

Please note that default behavior of "long double" is now x_float, and
must be explicitly overridden to g_float, d_float, or t_float by specifying
/L_DOUBLE_SIZE=64. Please see the preceding section on Targeting to
Pre-6.1 Systems for a discussion on implications of this switch.

The /FLOAT= switch continues to specify which of g_float, d_float, or t_float
should be generated for "double" variables.

• /PSECT_MODEL=[NO]MULTILANGUAGE

/PSECT_MODEL=MULTILANGUAGE instructs the compiler to employ
a psect allocation scheme for shared, overlaid psects which is compatible
with psects generated by other Alpha VMS compilers.

Since C structs to be shared with a FORTRAN application are padded
(and FORTRAN COMMON blocks are not), usage of this switch prevents
a possible linker error when multiple images created by two language
translators share a common psect.

The default is /PSECT_MODEL=NOMULTILANGUAGE, which is the old
behavior.

• Enhanced compiler diagnostics

79

The check group, under /WARNING=ENABLE=CHECK has been
embellished to detect a number of new questionable user coding practices.

• PRAGMA NOMEMBER_ALIGNMENT value

The #pragma nomember_alignment pragma has been augmented to accept
as an argument any one of the following case-insensitive values:

byte (the default), word, longword, quadword, octaword

This value directs the compiler to align the structure at the specified
boundary.

The compiler will, however, continue to byte align the members of the
structure, as per nomember_alignment. With this behavior it is now
possible to specify structures whose size is not a multiple of their
alignment. This is problematic in the case of arrays of such structs.
Consequently, the compiler will generate an -E- level diagnostic, along with
a suggestion for the amount of required padding the user should specify in
the struct to ensure size compatibility.

When using this new alignment option, it is also suggested that the
/WARNING=ENABLE=CHECK commandline switch be used to allow the
compiler to check for poorly aligned structure members.

• Support for C++ style comments

DEC C for OpenVMS Alpha supports C++ style comments in all modes
except
/STANDARD=ANSI89, because they are not allowed by the C standard.

• Suppress object module references to unused extern declarations

DEC C no longer requires definitions for unreferenced declared objects.
The following program no longer produces the linker diagnostic %LINK-W-
UNDFSYMS:

extern int x;
#include <stdio.h>
int main(void)
{
printf ("Hello, world\n");

}

80

• In addition to #pragma inline function_name, the user can now suggest
inlining of a function with _ _inline. Below, both func1 and func2 are
candidates for inlining:

__inline void func1(void) {}
void func2 (void) {}
#pragma inline func2

• The redundant use of a type qualifier of a pointer (e.g., int * const const p;)
produces a warning diagnostic.

• Redundant type specifiers (e.g. int int x;) now produces warning,
not error, diagnostics. Warning diagnostics are suppressible via
/WARNING=DISABLE, whereas error diagnostics are not.

• Functions declared volatile or const via a typedef:

typedef int (F) ();
const volatile F abs;

now produce a CONSTFUNC or VOLATILEFUNC diagnostic.

• A new level of optimization, /OPT=LEVEL=5 . When selected, this includes
all optimizations through level 4, plus software pipelining. See the User’s
Guide, table 1-9 for more information.

• Numerous other compiler optimizations, including:

• small integer operations (char and short)

• numerous code improvements accessing struct members

• improved peephole optimizations

• builtins.h no longer includes ints.h .

81

5.16 Problems fixed in V7.3
A number of bugs have been fixed in this version. These include:

• A small number of compiler crashes and wrong optimized code problems
were fixed.

• The compiler now gives a RETPARMCONST error diagnostic if a constant
is used as the argument to a builtin function parameter that specifies
the address of a variable in which to store a result value (e.g. the second
parameter of _ _PAL_INSQHIL). This is because the address of a variable
is never a compile-time constant. Previously, specifying a constant could
sometimes cause the compiler to crash.

• The compiler now diagnoses the use of excessively large integer values
in #line directives. Under C99, an implementation is only required to
accept values as large as 2147483647. Larger values now produce a
LINETOOLARGE warning. An optional XTRALARGE informational can
be requested to report values greater than 32767, which was the C90
requirement.

• The compiler no longer issues spurious warnings for constant expressions
within the unevaluated part of a short-circuited constant expression
involving the " | | " or "&&" operators. Previously, only the ternary "?:"
operator in a constant expression suppressed warnings in its unevaluated
operand.

• The optional FALLOFFEND diagnostic is now correctly detected and
reported in more cases, particulary within functions that are inlined.
Programs that previously compiled cleanly with this diagnostic enabled
may now report the diagnostic.

• The evaluation of compound literals with side effects could sometimes
cause those side effects to occur more than once, depending on the way
in which the compound literal was used. For example, when used as an
argument to printf, side effects in compound literal arguments could occur
three times.

82

• The value of the predefined macro _ _STDC_ _ is now set to 2 by default or
when /STANDARD=RELAXED is specified. The HP C V7.1 release used
to set the macro to a value of 1 in these cases. This was an error because
the C Standard states that the value of 1 should indicate a conforming
implementation.

When /STANDARD=RELAXED is specified, the compiler accepts extensions
that prevent it from being a strictly conforming implementation. When
/STANDARD is used with a value other than RELAXED, the value of
_ _STDC_ _ is the same as that for the V7.1 release.

• Certain invalid structure declarations could cause the compiler to crash
when /STANDARD=VAXC was specified. This problem has been corrected,
and the compiler now emits a warning.

• If a compilation changed certain diagnostics to -E- level and then later
disabled them, the compiler could crash. This problem has been corrected.

• If a nested structure element was passed to a function whose linkage was
modified with a #pragma linkage directive, the compiler could crash. This
problem has been corrected.

5.17 Problems fixed in V7.1
A number of bugs have been fixed in this version. These include:

• Correction to <time.h>

This kit supplies an updated version of DECC$RTLDEF.TLB that
addresses various issues in an upward-compatible fashion. However, there
are changes to the conditionalization of the layout and member names
for the type "struct tm" (from <time.h>), as well as conditionalization
of the implementation of the gmtime() and localtime() functions [and
their reentrant variants gemtime_r() and localtime_r()] to be used, that
might affect some programs. As a general precaution to minimize possible
problems, it is recommended that if any source module that #includes
<time.h> is recompiled, all modules in the application that #include
<time.h> should also be recompiled.

The purpose of the changes is to address an interrelated set of C++
functionality issues, C library user-namespace, and binary compatibility
issues in a way that will be consistent between C and C++ going forward
with new versions of the compilers and run-time libraries.

83

• C++ functionality:

The C++ standard library’s "time_put" time formatting facet relies on
the ability to access timezone information from values of type "struct
tm". Changes were made to ensure that C++ compilations always select
the implementations of localtime() and gmtime() [and their reentrant _
r variants] that support timezone information, and that the declaration
of type "struct tm" always has space for the timezone-related members.

• User-namespace:

The members of struct tm that support timezone information are
not part of the C standard. They are actually a common extension
from BSD Unix, with conventional names of tm_gmtoff and tm_zone.
Although the C standard allows an implementation to define additional
members in struct tm, it does not reserve the prefix "tm_" for that
purpose. So a strictly-conforming C program could #define tm_zone
as a macro expanding into something that would cause a syntax error
when encountering tm_zone as the name of a member in a struct
type. Or conversely, a program compiled with the strict C namespace
in effect could refer to the members by their BSD names, without
getting a diagnostic, and infer that the names were defined under the
C standard.

Previous versions of <time.h> handled this issue by suppressing the
declaration of these two members entirely under the strict C namespace
(_ANSI_C_SOURCE). This new version has an option to declare the
timezone-related members with names reserved to the implementation
when compiled with the strict C standard namespace in effect: instead
of tm_gmtoff and tm_zone it declares the members as _ _tm_gmtoff
and _ _tm_zone (which is the convention on Tru64 and Linux systems).
Using this feature, the size of type struct tm is the same regardless
of the choice of the strict standard C namespace or the enabling of
extensions.

• Binary compatibility:

Previous versions of <time.h> that unconditionally suppressed the
two non-standard members in struct tm under the strict C namespace
resulted in potential binary incompatibility between modules compiled
with/without the strict C namespace. The option in the new <time.h>
of just changing the names of the members to meet the requirements

84

of the strict namespace makes modules compiled with either setting
binary compatible, but it introduces potential for binary incompatibility
with pre-existing object modules that cannot be recompiled from source.

Note that modules compiled with different sizes for struct tm only
have potential for encountering a problem; in typical usage no problem
will occur because struct tm is not often embedded within a struct or
used as an element of an array, with that struct or array then shared
beteen compilation units. Typical code using "struct tm" only accesses
it locally through the pointer returned by the library functions, or
contructs a local instance that is then passed by address to library
functions. Those kinds of uses are not affected by a size difference that
occurs between different compilations.

But to help deal with possible situations where a real binary
compatibility problem is encountered, and it is not feasible to recompile
all of the modules involved, the "struct tm" declaration in <time.h> can
be forced either to the short version (without the timezone members)
or to the long version. Defining the macro "_TM_SHORT" before the
header is included will give the short version, and defining "_TM_
LONG" before the header is included will give the long version. If
neither macro is defined when the header is included, the behavior
remains unchanged when using current versions of the CRTL: the
strict namespace will declare the short version of the struct. However,
it is expected that a future CRTL version will change this behavior
always to declare the long version of the struct unless "_TM_SHORT"
is defined.

As described above, the use of implementation-reserved identifiers to
make the size of struct tm uniform regardless of whether or not the
strict C namespace is in effect was necessary to fix a bug in C++.
The DECC$RTLDEF.TLB headers are shared between the C and C++
compilers, but that bug did not affect the C compiler, and it was felt that
the risk of encountering a binary incompatibility problem was slightly
greater for C than for C++. In part, this is because unlike C++, the
C compiler enables the strict C namespace under its /stand=ansi89 or
/stand=c99 qualifiers as well as when any of the _XOPEN, _POSIX, or
_ANSI_C standard-conformance macros are specified (see section 1.5
Feature-Test Macros for Header-File Control in the C Run-Time Library
Reference Manual). Therefore the change to the struct layout is not
enabled for the C compiler under current versions of the CRTL. The change
will take effect for the C compiler under a future upgrade to the CRTL.

85

However, note that the _TM_LONG and _TM_SHORT macros affect both
compilers, regardless of CRTL version. If your application contains C
modules that #include <time.h> as well as C++ modules that do, it is
advisable to recompile those modules with /define=_TM_LONG to avoid
possible binary incompatibility between the C and C++ modules. And you
can prepare now for the change in C coming with a future version of the
CRTL by testing with _TM_LONG defined.

• _ _MEMxxx builtin functions treated length as signed.

The builtin functions _ _MEMMOVE, _ _MEMCPY, and _ _MEMSET were
erroneously generating code to sign-extend the length parameter before
passing it to an OTS$ routine that interprets the length as a signed 64-bit
value. The length parameter for the standard C library routines is of type
size_t, which is unsigned int on OpenVMS. But the sign extension done by
these builtins made a length greater than or equal to 2147483648 be seen
as negative by the underlying OTS$ routines, and those routines treat a
negative length as a no-op. Although lengths so large are unusual, they
are possible and need to be supported.

It is possible that some source code exists that actually computes negative
length values, and relies on these values being treated as no-ops. That
behavior is not supported by the standard, although it is a convention
used in similar VMS library routines. With this bug fixed, such code will
most likely ACCVIO at run-time. Such code needs to be changed to test
the length value explicitly to determine if it is in a range that should be
ignored, and either bypass the call or use a length of zero - that is the only
way to assure correct operation.

Note that the <string.h> header actually defines macros to replace
invocations of the standard C functions memmove, memcpy, and memset
by invocations of these builtins. And these functions are also recognized
as intrinsics, so even without the macros the compiler by default would
optimize them into builtins. Therefore, just recompiling a module will
most likely introduce the effect of this fix, even if linking against the
same version of the CRTL. It would be possible to #undef these macros (or
change the invocations to enclose the function name in parenthesis to avoid
macro substitution), and also use #pragma function or optimization controls
to avoid use of the builtins and force a call to the CRTL implementation of
these functions. However, the CRTL implementation will also be changed
in a future version to correct this problem. The only reliable way to ensure

86

that a negative length value will be treated as a no-op instead of a large
positive value when using these standard C functions is to modify the
source to test the value explicitly - that’s what the standard-conforming
behavior requires.

Finally, note that this bug is not present in either the builtin or CRTL
implementions of these functions on OpenVMS I64, so this fix makes the
Alpha behavior match the I64 behavior.

• The compiler could generate incorrect code in some situations where a
struct consisting of a single longword member is modified, and then the
value of the member is accessed. If the struct was allocated to a register,
the code could fail to account for the unused longword in the register.
The following example produces code where the value of rec.p used in
the comparison is not properly sign-extended when compiled without
optimization:

#include <string.h>
int f () {

struct s {void *p; } rec;
memset (&rec, 0, sizeof (rec));
return rec.p == 0;

}

• The /NAMES=SHORTENED command line qualifier was not causing
module names (either when specified by #pragma module or when derived
from the source file specification) to be shortened, but simply truncated.
This was an oversight in the original implementation of the qualifier, since
distinct module names are significant to the librarian and when linking.

• The processing of C99 initializers with designators, in cases where later
designators needed to override earlier designators, could cause the compiler
to crash.

87

• The left operand of a comma operator was not checked for volatile accesses,
and could be optimized away even if it contained accesses made through
volatile lvalues.

• Certain unusual forms of function-call syntax, when used to invoke a
function with non-standard linkage specified by #pragma use_linkage,
could result in generated code that failed to use the specified linkage.
And using a function invocation as the expression in a return statement
could cause a compiler crash if the return type was a struct type, and
the function used in the return expression was defined with non-standard
linkage.

• Some cases of incompatibily between old-style functions and prototype-style
declarations were not being diagnosed. Also, in C99 mode the return type
on a function declaration could be omitted and default to int without a
diagnostic, which is not permitted by the C99 standard.

• The _ _PAL_BUGCHK builtin function for Alpha should always have taken
a parameter, but was incorrectly declared and implemented as taking no
parameters. As a result, any use of this builtin (which obviously cannot
be used in user code) would produce a bugcheck code that was arbitrary
(whatever happened to be in R16 at the time). This has been corrected in
<builtins.h> and the compiler to take a single parameter of type unsigned
_ _int64.

• If the /FIRST_INCLUDE qualifier specified an empty file, the compiler
would crash.

• The output generated for the /MMS_DEPENDENCIES command line
qualifier no longer contains a form-feed character every 60 lines.

88

• An attempt to initialize an object of the C99 type _Bool having static
storage duration, using an initializer containing an address constant,
caused the compiler to crash. This was because the compiler attempted to
put a relocation on the byte-sized _Bool object for the linker to fill in, and
there is no such relocation.

Such an initialization is permitted by the C99 standard. But there
is an implementation issue in that the conversion from pointer to _
Bool is specified as the result of comparing the pointer to a null pointer
constant (pointer != 0); and there is no relocation available to compute
that expression. On the other hand, the only way that an address constant
could compare equal to a null pointer constant would be if it were the
address of an external identifier that remained undefined. Under the
standard, when a translation unit refers to an identifier with external
linkage, then somewhere among all the translation units that make up
the entire program there must be exactly one definition of that identifier,
or else the behavior is undefined. So under the standard, a conforming
implementation is permitted to get the "wrong" result in the event that the
external reference remains undefined.

One way to get the "right" result would involve adding a new relocation
for this special case. Another would be to have the C compiler generate a
LIB$INITIALIZE routine to compute the result at program startup. The
latter is what C++ compilers, and many C compilers that have a shared
implementation with C++, usually do. We have chosen to do neither of
these, and instead this construct gets flagged with a new informational
message, "STATICBOOLADDR" by default in all modes that support type
_Bool. The message is self-explanatory, especially if you compile with
/WARN-VERBOSE, which includes suggested workarounds.

• Support for variadic function-like macros (the use of "..." in the parameter
list and _ _VA_ARGS_ _ in the replacement list) was introduced in the C99
standard. This feature was mistakenly enabled in the ANSI89 and VAXC
modes of the compiler. The feature has been disabled in those dialects in
the new compiler.

• The compiler failed to warn about data loss when a case label constant was
too large to fit in the promoted type of the switch expression.

89

• The compiler was incorrectly setting the NOPIC attribute on the
$READONLY_ADDR$ psect it generates.

5.18 Problems fixed in V6.5
A number of bugs have been fixed in this version. These include:

• some very rare optimization problems that were still present in V6.4A
where struct member assignments could be incorrectly optimized away

• some assertion failures in GEM when generating debugging symbols with
optimization turned on

• a number of longstanding problems with character constants and wide
character constants, including inability to use wide character constants in
#if expressions

• #pragma module module-name [module-ident | "module-ident"]

For consistency, a module-name whether explicit or default considers the
/NAMES qualifier and ignores #pragma names.

if the module-name is too long:

• A warning is generated if /NAMES=TRUNCATED is specified.

• There is no warning if /NAMES=SHORTEN is specified.

A shortened external name incorporates all the characters in the
original name. If two external names differ by as little as one character,
their shortened external names will be different.

If the optional module-ident or "module-ident" is too long a warning is
generated. A #pragma module directive containing a "module-ident" that is
too long is not ignored.

The default module-name is the filename of the first source file. The
default module-ident is "V1.0" They are treated as if they were specified by
a #pragma module directive.

If the module-name is longer than 31 characters:

• and /NAMES=TRUNCATE is specified, truncate to 31 characters, or
less if the 31st character is within a Universal Character Name.

90

• and /NAMES=SHORTENED is specified, shorten the module-name to
31 characters using the same special encoding as other external names.
Lowercase characters in the module-name are converted to upper case
only if /NAMES=UPPERCASE is specified.

A module-ident that is longer than 31 characters is treated as if
/NAMES=(TRUNCATED,AS_IS) were applied, truncating it to 31
characters, or less if the 31st character is within a Universal Character
Name.

The default module-name comes from the source file name which always
appears in the listing header along with a blank module-name and ident.
The module-name (and ident) appear in the listing header only if they come
from a #pragma module directive or differ from the default. The heading
and sub-heading fields of the listing header are not affected.

5.19 Problems fixed in V6.4A
The V6.4 kit was found to have a number of significant problems that are fixed
by this update. The first two of these problems involving incorrect optimization
were actually regressions introduced in V6.2, but were not discovered until
after V6.4 shipped.

• incorrect optimization of array element accesses

In certain cases, optimization of accesses to array elements could produce
incorrect code. The bug can manifest under the following conditions:
an extern array declared with incomplete type has two assignments
to the same array element, other than element zero, and one of the
assignments uses a constant for the index while the other does not.
Optimization incorrectly assumes that the assignments affect different
array elements. If the same array element expressions are then used to
fetch values, the compiler may replace one or more fetches with the value
previously assigned, rather than taking into account the fact that the other
assignment may have changed the stored value.

This bug is a regression relative to V6.0. It was introduced in V6.2, and
is present in the ECO kits for V6.2 and V6.2A, and in V6.4-005. The
workaround is to compile /nooptimize. It is first fixed in V6.4A.

An example:

extern int table[]; // Incomplete extern array
#define IDX 9 // Constant non-zero index
int bug(int i) {

table[i] = 2; // Assign using variable index
table[IDX] = 1; // Assign using constant index

91

return table[i] // Fetch using variable index
+ table[IDX]; // Fetch using constant index

// Bug: Optimization returns constant 3, although
// correct result is 2 if i == IDX.

}

• incorrect optimization of struct member accesses

In certain cases, optimization of struct member accesses could produce
incorrect code. The exact circumstances required to manifest the bug vary
considerably, and are sensitive to small changes in the source code and
declarations. The bug is most likely to manifest when there are structs
containing members that are arrays of structs that have bitfield members,
and accesses are made to bitfield members and/or other members that
share the same storage unit through the same array element - but some
elements are specified with an index that is a compile-time constant and
others use an index that is a run-time value. This has some similarity in
symptoms to the previously-cited bug, but it is a separate problem.

This bug is a regression relative to V6.0. It first appeared in the second
ECO kit for V6.2 (V6.2-006), and is present through subsequent ECO
kits to V6.2 and V6.2A, and in V6.4-005. The workaround is to compile
/nooptimize. It is fixed in V6.4A.

An example (Note: this particular example does not show the bug under
the V6.4-005 compiler, but a longer version of this example does show it):

#include <stdio.h>
#include <string.h>

typedef struct STR1 {
char static_s[28];
struct {
unsigned int ls_z;
unsigned ms_z : 11;
unsigned nd_z : 4;
unsigned pad0 : 1;
unsigned short pad1;
unsigned int pad2;

} bits;
} STRUCTURE1;

92

typedef struct STR2 {
int sub_recnum_d;
char sub_s[32];
int sim_records_d;
struct {
int sim_recnum_d;
STRUCTURE1 s1;
int sim_pending_b;

} ar[4];
} STRUCTURE2;

void dummy_stub(int* ignored)
{
return;

}
void main(void)
{
int idx;
STRUCTURE2 s2;

memset<(&s2, 0xAA, sizeof(s2));

idx = 0;
printf("%X\n", s2.ar[0].s1.bits.ls_z);

dummy_stub (&idx);

/* Code for this assignment gets removed! */
s2.ar[idx].s1.bits.ls_z = 0x12345678;

s2.ar[idx].s1.bits.nd_z = 0;

printf("%X\n", s2.ar[idx].s1.bits.ls_z);
}

• parameters of type float _Complex

Compiling a function definition for a function with a parameter of type float
_Complex, the V6.4-005 compiler will incorrectly issue a REGCONFLICT
error in some common cases (e.g. if the float _Complex parameter is first,
and the second parameter has a floating point type).

• incorrect external names under /FLOAT=D_FLOAT

V6.4 introduced a new table in the compiler for the purpose of reserving
and prefixing the names of certain run-time library functions that were
added to the C standard in C99. Errors in this table cause the V6.4-005
compiler to generate incorrect external references in the object module for
calls to the following math routines when /FLOAT=D_FLOAT is in effect:
acosh asinh atan cbrt copysign erf erfc expm1 nextafter lgamma log1p log2
logb rint trunc.

• names not prefixed under /prefix=ansi_c89_entries

93

Errors in the same table mentioned in the previous item also cause the
V6.4-005 compiler not to put the DECC$ prefix on calls to the following
four routines when /prefix=ansi_c89_entries is in effect: wcscat wcscpy
wcsncat wcsncmp.

• signal.h supports compiling under /pointer_size=long

In previous kits, the signal.h header file did not accommodate handlers
that were declared with 64-bit pointers. This could cause warnings in
compilations that used the /pointer_size=long command line qualifier. The
header in this kit resolves this problem.

• multiple version support issues

The V6.4 kit introduced support for installing more than one version of the
compiler on the same system. This kit addresses some issues with that
support, including consistent upper/lowercase conventions in the scripts
to avoid problems on ODS-5 volumes, and providing the CLD file that
matches each installed compiler version.

• Stack probing bug

There was a short time span where the register allocator could incorrectly
use R26 for stack probing before the return address had been saved. This
bug has been present since early versions of Compaq C, but no C code has
been able to trigger it to date. Nevertheless, this window of opportunity for
generating the incorrect code needed to be closed. Closing that window of
time meant that an additional register had to be made available for stack
probing. This means that there is one less register available for a pragma
linkage preserved register list.

5.20 Problems fixed in V6.4

• token-pasting hex constants

There was a problem using the preprocessor’s token-pasting operator with
operands consisting of a pp-number containing the letter E or e. In some
case the operand would be treated as two separate tokens in modes other
than VAXC or COMMON. E.g. in the following example, the initializer
for "a" was correct, while the initializer for "b" was expanded to "0x0E a"
instead of "0x0Ea".

#define XXX(xxx) 0x##xxx
int a = XXX(0Aa);
int b = XXX(0Ea);

• backslash-newline in COMMON mode

94

Under /MODE=COMMON/PREPROCESS_ONLY, the compiler would
sometimes recognize a backslash-newline sequence outside of the context
of a string literal, a character constant, or a preprocessing directive, and
produce an output file reflecting logical line-splicing instead of leaving the
backslash-newline sequence intact in the output. This problem has been
corrected as shown:

Input:
char str1[10] = "A"\

"Z";
char str2[10] = ’A’\

’Z’;
Incorrect output for /stand=common/preprocess_only:

char str1[10] = "A"
"Z";

char str2[10] = ’A’ ’Z’;
Corrected output for /stand=common/preprocess_only:

char str1[10] = "A"\
"Z";

char str2[10] = ’A’\
’Z’;

5.21 Problems fixed in V6.2A ECO kit 4

• /OPT problem with va_args

In circumstances that cannot easily be characterized at the source
code level, optimization of the code generated for the va_arg macro (for
traversing variable-length argument lists) could produce an incorrect result
- in some cases accessing the argument value following the one that should
have been accessed. First corrected in V6.2A ECO kit 4, compiler ident
V6.2-009.

• /OPT problem with tail recursion

When the return statement of an old-style function definition contained a
recursive call, the compiler would sometimes try to replace the recursive
call with a loop construct that did not correctly intialize all the loop control
elements. First corrected in V6.2A ECO kit 4, compiler ident V6.2-009.

95

5.22 Problems fixed in V6.2A

• /OPT bug with loops

The compiler could incorrectly optimize certain loops in which computation
of the trip count depended on loop bounds and/or increments that were
run-time expressions that were not made into CSEs. This could manifest
either as incorrect code or an internal error. First corrected in V6.2A,
compiler ident V6.2-008.

• bltinimplret no longer emitted by default

The compiler used to emit the message bltinimplret by default when
certain runtime library functions that do not return an int were called
without including the appropriate header. This message was confusing to
many users when it appeared in existing well-debugged applications.

The compiler has been changed so that bltinimplret is no longer emitted
by default, but only when enabled explicitly (or as part of the performance
or level5 message groups). First corrected in ECO kit 3, compiler ident
V6.2-007.

• Compiler hang with /DEBUG/OPT

The V6.2 compiler could hang when compiling /DEBUG/OPT when there
are many instances of misaligned data. This was also a problem in the
V6.0 compiler. First corrected in ECO kit 2, compiler ident V6.2-006.

• /OPT bug with structs

The V6.2 compiler could incorrectly optimize away certain "store"
instructions that performed an assignment to a struct member. The
only reliable workaround is to compile /NOOPTIMIZE. First corrected in
ECO kit 2, compiler ident V6.2-006.

• _ _CMP_STORE_QUAD built-in function problem

Using the _ _CMP_STORE_QUAD built-in function with a 64-bit value as
the third parameter of the built-in will cause the compiler to generate code
that truncates the third parameter to 32-bits. First corrected in ECO kit 1,
compiler ident V6.2-005.

96

5.23 Problems fixed in V6.2

• excessive compile time for long initializer lists

Extremely long initializer lists (~100K initializer elements) caused
apparent looping in the compiler, which was actually an n**2 algorithm
introduced in V6.0 along with initializers with designators. This has been
corrected.

• compiler failure with /SHOW=EXPANSION

When compiling with /LISTING/SHOW=EXPANSION or -source_listing
-show expansion the compiler could accvio if there was a macro which
expandanded to a string of 32737 characters or more. The compiler will
now truncate the expanded macro text.

5.24 Problems fixed in V6.0
The following problems are also fixed in an ECO update for V5.7, V5.7-006

• In order to address a time-critical CLD, a compiler developer option is
temporarily being enabled in the C compiler. This command line option
allows the user to request that code generated for assignments to objects
that are specified as volatile and smaller than 32 bits not use the load-
locked/store-conditional sequences that in general can be required to assure
volatile data integrity. The option is needed to assure that code will not
hang when accessing certain kinds of memory-mapped I/O devices. The
option is specified on the cc command line using the syntax /switch=weak_
volatile. Because this is a compiler-developers option, if a compilation
using it fails to produce an object module (e.g. due to an error in the source
code), the compiler will issue a spurious warning message suggesting
that the name of the option might be misspelled. This option should very
seldom be used - it is needed to address certain hardware device-access
situations and should not otherwise be used.

• Passing a 64-bit pointer to builtin functions such as _ _STRCPY resulted
in a MAYLOSEDATA message. And in general, there were a number of
spurious messages and problems using intrinsic and builtin functions in
programs using 64-bit pointers. The V5.7 compiler’s newly-added feature
to detect intrinsic functions automatically had not been adequately tested
with mixed pointer sizes. All of these problems have now been addressed.

• The pow() intrinsic function incorrectly produced a zero result when the
first argument was negative and it was compiled with /assume=nomath_
errno.

97

• The preprocessor output of wide-string literals explicitly present in the
source failed to include the leading L character, turning them into ordinary
string literals when the preprocessed output was compiled.

• Compiling the following code with /noopt triggered an Assertion failure in
the compiler.

struct x {int y;};
int foo()

{ /* note: expansion of the offsetof macro: */
if (((unsigned int)(&((struct x *)0)->y)) == 0) {

return 0;
}

}

• The compiler sometimes generated procedure prologues that violated the
OpenVMS calling standard by moving the updated SP register into the FP
register before storing the address of the procedure descriptor. This could
cause certain debugger operations to report stack corruption, and could
cause runtime stack corruption in routines running under threads. E.g. a
machine code sequence such as the following:

MOV SP, FP
STQ R27, (SP)

• The compiler generated incorrect code when a function pointer was cast
to a pointer to a procedure descriptor in order to access members of
the procedure descriptor other than the code address. The generated
code always fetched the first longword from the procedure descriptor
(the code address), regardless of the location of the requested struct
member within the procedure descriptor. E.g. in the following example the
value proc->pdsc$l_size was incorrectly computed as the code address of
hstExecuteThread:

#include <pdscdef.h>
unsigned int foo(void)
{

extern int* hstExecuteThread();
unsigned int offset;
struct pdscdef *proc;

proc = (struct pdscdef*) hstExecuteThread;
offset = proc->pdsc$l_size - 24;

return offset;
}

98

• Negative values in a shareable image produced using the OpenVMS
message compiler could lose sign extension when cast to type int. An
example:

$ create tst1.c
#include <stdio.h>
extern int* TST_K_TYPE_I;
int gf11_msglist_extract_i4(int* arg_i_value) {

int i_type = (int)&TST_K_TYPE_I;
*arg_i_value = i_type >> 2;
return (-1) >> 2;

}
main() {
int x;
printf("%d ",gf11_msglist_extract_i4(&x));
printf("%d\n",x);

}
$ cc tst1.c
$ create tst.msg

.FACILITY/PREFIX=TST__ TST, ^X200

.LITERAL TST_K_TYPE_I = -1

.LITERAL TST_K_SIZE_I4 = 8

.SEVERITY ERROR
NO_I4 <>
ENDMSG <>

.END
$ message tst
$ create tst2.opt
SYMBOL_VECTOR=(-
TST_K_TYPE_I = DATA,-
TST_K_SIZE_I4 = DATA,-
TST__NO_I4 = DATA,-
TST__ENDMSG = DATA)
TST
$ link tst2.opt/opt/share
$ create tst1.opt
tst1
tst2/shareable
$ link tst1/opt
$ define/user tst2 sys$disk:[]tst2.exe
$ run tst1
Correct output is:
-1 -1
V5.7-004 produced:
-1 1073741823

99

5.25 Problems fixed in V5.7

• Case EVT102462 is fixed: SCA files for large compilations generated under
the /ANALYSIS_DATA qualifier no longer causes SCA-F-NOTERMINATE
from the SCA LOAD command when there are more than 65535 SCA
events.

• A bug in V5.6 caused informational and warning messages to be suppressed
when the questionable constructs appeared within the actual arguments to
a builtin or intrinsic function call. This is now fixed.

• DEC C now correctly handles array data members of function return
results (for functions returning struct or union values). E.g. the following
code no longer generates %CC-E-NEEDPOINTER:

typedef struct {
struct {

int field4;
int field5[10];

} field3;
} struct_t;

struct_t return_struct(void);

void foo (struct_t y) {
int x, z;
z = y.field3.field5[0];

/* generate NEEDPOINTER diagnostic below */
x = return_struct().field3.field5[0];

}

• If /ROUNDING_MODE is specified as other than NEAREST, and
/FLOAT=IEEE is not specified, then instead of emitting an error, the
compiler now emits an informational and changes the /FLOAT mode to
IEEE.

100

• A day-one problem in the code generated for /IEEE_MODE=UNDERFLOW_
TO_ZERO was exposed only under OpenVMS V7.1. Programs compiled
with this qualifier behave as expected under earlier versions of the
operating system, but receive floating point exceptions under OpenVMS
V7.1. The compiler problem is now fixed. Note that this particular
command line qualifier only affects the code generated for a C main
program. In particular, this option causes the generated main program
startup function, _ _main, to call SYS$IEEE_SET_FP_CONTROL. Earlier
compilers passed a "set_mask" value of 0x4010 as the second parameter
(R17 loaded with the address of this value). The correct value should
always have been 0x4000, but the extraneous bit did not cause a runtime
problem under pre-V7.1 versions of OpenVMS.

• Valid C code containing a file-scope const declaration initialized with an
address constant, and with the file-scope declaration referenced by an
extern declaration within a block, could cause a GEM-F-ASSERTION
internal compiler error and traceback containing routine GEM_ST_
UPDATE_IV_LISTS in the call chain. E.g., the following code triggers this
problem:

static char * const x = "hello";
void foo (void)
{

extern char * const x;
}

• In previous compilers, enumeration constants with values beyond the range
of type int were silently truncated to int. These now cause a warning to be
issued.

• Certain invalid preprocessing directives could cause an infinite loop in the
compiler. E.g. #module 0badident, #include directives with mismatched
delimiters.

• The REMQxxQ builtin functions have been fixed to return 64-bit pointers.

101

• Certain uses of the token-pasting operator to form valid hexadecimal
constants were incorrectly treated as errors. E.g., the following produced
an error but is now handled correctly:

#define SVAL(a,b) 0x ## a ## b
int i = SVAL(23a2,0bae);

• The compiler no longer issues a pointer mismatch warning when a pointer
to an array of unqualified element type is passed to a function declared
with a parameter declared as a multiply-dimensioned array type with a
type qualifier. The warning was erroneous, as the types are compatible
under ANSI C. E.g., the following no longer produces a warning:

extern void func1(const double dbl[][3]);
void func2(void) {
double adPnts[8][3];

func1 (adPnts);
}

• The compiler now warns when two different names with external linkage
in the same compilation are mapped to the same name in the object module
(e.g. due to truncation or forcing to monocase).

• The size of conditional operator (i.e. "?:") expressions was not being
computed correctly when the values were character string constants.
They were being treated as arrays instead of pointers. E.g. the following
produced an error instead of evaluating to the size of a pointer-to-char:

int is_what;
int b;
void f(void)
{

b = sizeof(is_what ? "one" : "testing");
}

• Left shift of signed ints did not perform final sign extension of the 32-bit
result.

102

5.26 Problems fixed in V5.6

• A compilation containing an ANSI function prototype for a variable
argument list using ellipsis syntax, with a mismatched K&R style
definition for that function, provoked the warning "%CC-W-FUNCREDECL,
In this declaration, function types differ because one has no argument
information and the other has ellipsis". But the compiler then access
violated after issuing the warning.

• Compiler crash and/or memory exhausted system hang using /debug
qualifier with #include <exc_handling.h>, or processing any other struct or
union type containing a member that is a pointer to a qualified version of
the same struct or union type.

• When compiling a comma-separated list of source files with /list, the listing
section containing the values of predefined macros would not be present in
the listing files for the second and subsequent compilations. In some cases,
the compiler would crash.

• Compiler would sometimes crash after emitting %CC-W-NOLINKAGE.

• Under /STAND=VAXC, inform/warn about use of "signed" keyword, which
was not supported by VAX C.

• Function parameters of type "pointer-to-qualified-type" in some cases could
not be examined in the debugger, provoking the messagee %DEBUG-W-
UNIMPLENT from the debugger.

• The /VERSION qualifier previously required that a source file name
be provided, and the compiler would then create a 0-length .OBJ file
corresponding to that source file, even though the action of the /VERSION
qualifier does not involve any source or object files. Now the compiler
version is obtained by running just "cc/version" without specifying a source
file name or any other qualifiers, and no object file is created.

103

• Fixes to VAXC and MS compatibility modes.

• Fixes to /ANA processing.

5.27 Problems fixed in V5.5

• In V5.3-006, if a source file to be compiled resided on a remote filesystem
that was mounted by NFS client services (either from Digital’s UCX
product or from other products providing NFS client services on OpenVMS
Alpha), or in some cases if the file was remote-mounted using DFS, it was
possible to receive the following fatal error message from the compiler:

%CC-F-OPENIN, error opening ’input-file’ as input
-RMS-F-COD, invalid or unsupported type field in XAB at ’addr’

The only workaround was to move the source(s) to a local disk.

• Under /optimize=level=5, the V5.3-006 compiler could encounter an
assertion failure attempting to compile certain kinds of loops with
conditional exits. An example is:

$ type foo.c
main()
{

int len;
char *cp;

while ((len > 1) && (*cp == ’0’))
++cp, --len;

}
$ cc/optimize=level=5 foo.c
Assertion failure: Compiler internal error - please submit...
%GEM-F-ASSERTION, Compiler internal error - please submit...
%GEM-F-ASSERTION, Compiler internal error - please submit...
%TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line
DECC$COMPILER GEM_DB GEM__DB_ASSERT_END 720
DECC$COMPILER GEM_DB GEM_DB_ABORT 587
DECC$COMPILER GEM_DB GEM_DB_ABORT_FAST 610
DECC$COMPILER GEM_LU VECTORIZE_LOOP 7606
DECC$COMPILER GEM_LU GEM_LU_MAIN 2126
DECC$COMPILER GEM_CO GEM_CO_COMPILE_ROUTINE 2078
DECC$COMPILER GEM_CO GEM_CO_COMPILE_MODULE 1432
DECC$COMPILER 0
DECC$COMPILER 0
DECC$COMPILER GEM_CP_VMS GEM_CP_MAIN 2509

104

• The globalvalue extern_model could produce a compiler traceback when an
external variable of a struct or other type not supported by globalvalue was
encountered. The compiler now produces an appropriate warning message
and uses the strict_refdef model for such declarations.

• SCA typing information for incomplete arrays declared with a typedef
declaration were sometimes incorrect and complex declarations caused
compile time access violations. Known instances of these problems have
been corrected.

• Placement of certain kinds of pragmas within declarations could cause
compiler failures or erroneous .ANA files to be produced uner /ANALYSIS_
DATA.

• Forward declarations involving structure members no longer cause invalid
.ANA files to be produced when compiling with /ANALYSIS_DATA

• Invalid .ANA files are no longer produced when compiling with
/ANALYSIS_DATA for source files with code beyond column 256.

• Better SCA reference information is output for struct declarations and
references.

• Functions with an excessive number of parameters (around 100) will no
longer cause the compiler to crash when outputting SCA information.
Instead, a warning message is emitted and further parameters will not
generate SCA information.

• Debugger support for pointers to functions has been improved.

• Improved initialization for redeclared variables. Previously the compiler
would not initialize a in the following code

int a;
static int a = 1;

105

• Delete the object file for certain backend-detected errors.

• Issue a warning for a cast expression used as an lvalue in strict ANSI
mode.

• Warning messages issued by the compiler backend are now subject to
message control qualifiers and pragmas. Previously, message idents such
as ASMRAWREG (issued by the backend for inline assembly code that
uses a hardware register that was not initialized by anything visible to
the compiler) were not known to the message control facility. An attempt
to suppress the ident would produce the message ’%CC-W-UNKMSGID,
Unknown message id or group "ASMRAWREG" is ignored.’

• A #undef or #define preprocessing directive appearing within the
arguments to a function-like macro invocation could cause the compiler
to crash (e.g. if it undefined or redefined the function-like macro being
invoked). This now produces a warning message.

• Source files containing very large numbers of #line preprocessing directives
could cause a seemingly infinite loop in the compiler due to an n**2
algorithm. The algorithm is now linear.

• A number of changes have been made to improve compatibility with VAX
C, Microsoft C, and UNIX compilers. New messages have been introduced
and old ones altered to mimic more accurately the behavior of these
other compilers when using the /STANDARD switch. Some of the these
compatibility changes are:

• Do not accept an array of incomplete types.

• Do not allow constructs like "(z ? x : y).a = 1;"

• Issue warning for pointer to int assignment.

• Do not allow pointer types as case constants.

106

• Disable processing of type qualifiers after a comma.

• Handle redeclaration of items with different storage classes.

• Implement VAX C style unnamed struct/union members in VAXC mode,
where the struct/union type of the unnamed member is treated as if
it occurred outside of any containing struct/union. In MS mode, the
same construct is treated like a C++ unnamed member of union type
in C++: the members of the nested struct/union are promoted to the
containing struct/union, similar to the behavior of VAXC variant_struct
and variant_union constructs.

• Allow "x->y" under /STAND=VAXC where x is an integer constant or
variable.

• Under /STAND=VAXC, "sizeof(&array)" now returns "sizeof(array)" (i.e.
the size of the array object) instead of the size of a pointer (which is
what ANSI C requires in this case).

• Emit meaningful error message for a[b] when both a and b are pointers.

• Emit informational in VAXC mode for declarations with an explicit
"extern" storage class which are also initialized.

• Issue a warning message for cases like a->b where a is a pointer to an
incomplete struct/union.

• In MS mode, allow an incomplete array type only as the last member
in a struct or union. Previously, other incomplete types were accepted,
and they were not restricted to the last member.

• Allow globalvalues to be used in initializers Alpha as they are on VAX.

• Allow ellipsis in old-style function definitions under /STAND=VAXC.

107

• Emit language extension messages for _ _restrict and _ _unaligned in
/STAND=PORT

• Improve handling of VAX C storage class modifiers (noshare, readonly,
_align) to more closely match the VAX C compiler’s behavior.

• In modes other than VAXC, emit additional diagnostics when a function
is redeclared with a different type.

5.28 Problems fixed in V5.3

• V5.2 introduced a bug which caused logical name translation to be applied
to the names of text library modules.

• V5.2 changed the behavior of /NESTED_INCLUDE=PRIMARY_FILE
on Alpha to match that of DEC C on VAX, which was unintentionally
incompatible with the original VAX C behavior. In V5.3, both VAX and
Alpha interpret this qualifier to produce behavior that is compatible with
VAX C.

• Use of the /CHECK=POINTER_SIZE qualifier could cause a compiler
failure if a cast of a constant to a long pointer type was assigned to a short
pointer variable.

• Calling LIB$SIGNAL from within a signal handler failed to produce a
traceback.

• Problems involving the use of variable argument lists (<stdarg.h> or
<varargs.h>) were fixed. These involved old-style function parameters
of types requiring default argument promotion (now get an E-level
diagnostic), and the use of a va_list variable that was not a simple
locally-declared variable (now handled correctly).

108

• Diagnostic messages containing character constants using a hex escape
sequence were being printed with the "x" character omitted.

• The preprocessor now allows the "defined" operator to be produced as
a result of macro expansion. ANSI C does not specify whether or not
this should be allowed. Under /standard=ansi89, a warning message is
produced when the preprocessor encounters such a construct. In relaxed
ANSI an informational is issued instead.

• Under /STAND=VAXC, the type of the sizeof operator is now signed int
(matching the behavior of VAX C) rather than unsigned int (which is
required by ANSI C).

• A block-scope extern declaration with incomplete type, with linkage to
a file-scope declaration with complete type, "hid" the completed type
information from being available within the scope of that block. This could
produce an E-level diagnostic for a correct program such as the following:

int i[] = {1, 2, 3};
unsigned int f()
{

extern int i[];
return sizeof(i);

}

• An initialized globalvalue may now be used as a compile-time constant,
just as an enumeration value can be.

• For a compilation with multiple source files in a comma-list, the module
names in the .ana files produced under the /ana qualifier were incorrect for
all but the first compilation.

• Under /standard=vaxc, match the VAX C behavior and accept a sequence of
conflicting type specifiers with a warning and use the last one, instead of
issuing an E-level diagnostic.

109

• SPR HPAQA9E70: Statically initialized data declared with the "const"
qualifier was being placed in the $READONLY$ psect, even if it contained
address constants requiring fixups. This rendered the entire psect non-
sharable. Constant addresses requiring fixups are now placed in a different
psect ($READONLY_ADDR$), allowing the $READONLY$ psect to remain
sharable.

• SPR HPAQ628CF: Static initialization using a globalvalue as an initializer
produced incorrect initialization if the type of object being initialized was
not int (e.g. if it was a char or short type).

• The compiler now allows an actual argument to a function call to pass
the address of a globalvalue; formerly this produced an E-level diagnostic
even in VAX C mode. Also changed the mechanism for passing the address
of a constant such that if the callee modifies the value it will not affect
subsequent calls. This makes the behavior compatible with VAX C.

• The compiler failed to diagnose an ANSI constraint violation for an old-
style function definition with a parameter identifier list, where one of the
parameter names matches a visible typedef name.

• The compiler failed to diagnose use of the name of a variant_struct
or variant_union member when constructing the name of a contained
member. This is a VAX C feature, and VAX C compiler produces an E-level
diagnostic if the name is used in this way.

• The compiler was incorrectly producing an E-level "invalid declarator"
diagnostic when a label was defined with the same name as a typedef.
Labels have a separate namespace and should not conflict with other
declarations.

• The compiler would fail if it attempted to output a diagnostic message
referring to an unnamed bit field in a struct or union declaration.

110

• Under /stand=common, hexadecimal escape sequences (\xnnnn) were being
recognized within string literals and character constants. This feature was
part of VAX C and ANSI C, but it was not present in "pcc" compilers, and
recognizing it under /stand=common produced results that differed from
pcc compilers.

• SPR HPXQ11CEF: Compiler failure when globaldef storage class is applied
to a function. The compiler now gives an appropriate E-level diagnostic
when globaldef, globalref, or globalvalue storage class is applied to a
function.

• Compiling a function definition that attempts to use a typedef for its
function header could either cause a compiler failure or produce an
inappropriate diagnostic, e.g.:

typedef void VFV();
VFV f;
VFV f {}

This now produces the correct diagnostic: %CC-E-TYPEDEFFUNC, In this
function definition, "f" acquires its type from a typedef.

• If a globaldef declaration specified a psect name, the psect specification
would be ignored if the same variable was previously declared in a globalref
declaration.

• A block-scope declaration with the extern storage class would cause a
compiler failure if the identifier being declared matched a visible typedef
name declared at file scope.

• Compiler failure when attempting to output a fatal error message. The
following example produced a compiler failure trying to output the fatal
error message for include file not found. The root cause involved the
specific placement of the pragmas in relation to the declaration:

111

struct my_s {
#pragma message save
#pragma message disable portable

int one;
int two;

#pragma message restore
};
#include <i_dont_exist.h>

• When the VAX C "main_program" keyword was used to identify a main
program procedure with a name other than "main", the compiler still
generated a global procedure named "_ _MAIN". This made it difficult to
put more than one such object module into a single object library. The
compiler now makes the "_ _MAIN" symbol it generates in this case a local
symbol.

• Under /stand=vaxc, an incompatibility between a function prototype and
the corresponding function definition produced only a W-level diagnostic,
but calls to such a function were silently ignored by the compiler, causing
incorrect behavior at runtime. The diagnostic remains at W-level, but now
the generated code is correct.

• Compiler failure when processing a long comma-list of source files (more
than 20 sources).

• SPR UVO104030: Compiler failure under /preprocess_only when processing
a pragma with incorrect syntax.

5.29 Problems fixed in V5.2

• DEC C will now Skip parameter checks if we are evaluating an operand to
sizeof in common mode as in the example below:

j(int a)
{
p(sizeof(j()));
}

112

The severity of the messages concerning too many and too few parameters
is now a warning in VAXC mode (/STAND=VAXC) rather than an error.
This behavior is compatible with VAX C.

• Error messages have been relaxed for conflicting extern defs as follows:

For /STAND=COMMON there is no change in behavior.
All extern declarations are promoted to file scope. When the compiler
encounters a conflicting declaration, it will issue a error as it has always
done.

For /STAND=VAXC the severity of the error message has been reduced to a
warning.
VAX C issues a warning whenever it finds a conflicting extern declaration.
It does not matter if the declarations are in the same name scopes or not.
In addition to issuing a warning, VAX C replaces the prior declaration with
the new declaration from the point of the new declaration onward. DEC C
now matches this behavior in VAXC mode.

For /STAND=ANSI, /STAND=RELAXED
Errors will be generated, (as they always were) if there is a conflict between
declarations that are in the same or inner name scopes.

DEC C will issue a warning if there is a conflict between names that are in
disjoint scopes. This will no longer be an E-level message. The standard
says that such a case is in error, but that a diagnostic does not have to
be issued. We felt that it was better to issue a diagnostic than to silently
accept the program.

For example, in the program shown below:

/STANDARD=COMMON will result in no diagnostic messages.
/STANDARD=VAXC will result in a warning message about incompatibile
declarations for the second and third declaration of init_color
/STANDARD=RELAXED, /STANDARD=ANSI will result in an
informational diagnostic on the second declaration of init_color because it
is implicitly declared and will result in a warning on the third declaration
because it is incompatible with the declaration on line 3, even though it is
in a different scope.

main()
{
extern void init_color();

}

113

Raise_Maps()
{
init_color();

}

Title_Page()
{
extern void init_color();

}

• A problem has been corrected which could cause an ACCVIO at compile
time when compiling with the qualifier /ANALYSIS_DATA.

• In all modes, functions declared at block scope will now have their storage
class set to extern. A warning is issued if the storage class is register. A
warning is also issued if the storage class is auto (except in VAXC mode).
If the storage is static, in common and vaxc mode then no warning is
issued for the declaration. But a warning will issued later if the function is
referrenced and not defined anywhere in the module.

• SPR EVT101335
Whenever a call causes more than 255 items (longwords on VAX/quadwords
on Alpha) to be used in constructing the arg list a warning will be issued.
On Both VAX and Alpha an informational will be output warning that the
argument list length exceeds maximum specified by the calling standard.

/* This program used to ACCVIO on VAX/VMS, now
it gets a compile-time diagnostic */

struct {
int i;
char longer_than_1020[1021];
} public_domain_sloppy_programmer;

void nothing();
main ()
{
nothing (public_domain_sloppy_programmer);

}

• SPR UVO102632 Formerly the compiler sometimes failed to issue a
diagnostic when an assignment was made to a constant array as in the
example below:

114

void fred (void)
{

typedef int A[2][3];
const A a = {{4, 5, 6}, {7, 8, 9}};

a[0][0] = 42;
}

• The compiler will now accept unnamed structures as members of a struct
in VAXC mode.

• The compiler will now issue a warning instead of an error when pointers
and ints are compared in common mode.

• The compiler will now issue a warning when preprocessing directives are
used in the argument list for a macro

• The compiler will now Allow more than just integers in switch and case
expressions in vaxc and common modes. We now issue a new warning
when a float or pointer is used in a switch or case expression.

• A problem has been corrected involving the #dictionary directive when
it was nested within a structure declaration. The compiler now correctly
generates a member name for the extracted CDD record nested within a
struct, not a tag name.

• The Alpha VMS V5.0 Help (and the User’s Guide) are incorrect in their
description of /IEEE_MODE=FAST.

The V5.0 documentation reads:

/IEEE_MODE
/IEEE_MODE=option
/IEEE_MODE=FAST (D)

Selects the IEEE floating-point mode to be used if
/FLOAT=IEEE_FLOAT is specified.

Options:

115

FAST During program execution, no exceptions are
raised and only finite values (no infinities,
NaNs, or denorms) are created. Your program
must examine errno for any error indication.

It should, however, read:

Options:

FAST During program execution, only finite values
(no infinities, NaNs, or denorms) are created.
Exceptional conditions, such as floating point
overflow and divide by zero, are fatal.

• The compiler will no longer remove code that accesses a location under the
"volatile" qualifier, even if the value is unused. E.g. the statement "x;" will
now generate code to fetch x if x was declared volatile.

• The macro definitions within a /define=(name[=value],...) list are now
processed left to right. Thus /DEFINE=(A=1,A=2) now leaves A defined as
2 instead of 1.

• Some cases of right-shifting the result of an int left-shift operation could
produce incorrect code, e.g. ((i32 << 24) >> 16) and ((i64 << 32) >> 48)
produced incorrect results.

• Problems with the /NESTED= qualifier have been fixed.

• The severity of the NONMULTALIGN message has been reduced to a
warning.

•

• Several problems in computing the value of an integer constant constructed
through token-pasting in the preprocessor have been fixed. E.g. the
following code formerly resulted in an incorrect message "%CC-W-
INVALTOKEN, Invalid token discarded".

#define concat(a,b) a ## b
return concat(0x0,1AL) ;

It now is handled correctly.

116

5.30 Problems fixed in V5.0

• DEC C used to issue messages for lexical "errors" appearing within the
bodies of macro definitions for macros that were never used. In some cases
these should not have been issued according to ANSI C (e.g. warnings
for octal constant containing digits 8 or 9), and generally such potential
problems do not require an ANSI diagnostic. Common practice is to defer
such reports until a macro is used, which is what DEC C now does.

• The result of compiling the output of the /PREPROCESS_ ONLY qualifier
was not always the same as the result of compiling the original program.
Consider the program below.

#define A(x) -x
main() {

int i = 1;
printf("%d\n", -A(i));

}

The output from /PREPROCESS_ONLY used to place the ’-’ of the body of
macro A next to the ’-’ before the macro invocation, producing:

printf("%d\n", --i);

Now the output has a space to separate the two ’-’ characters to prevent
this accidental token-pasting unless the compiler is in common or vaxc
modes, where this kind of token-pasting is done when compiling the
original source directly.

• When doing macro substitution inside string constants in VAX C mode,
DEC C did not always substitute when VAX C would. Given the macros:

#define str1(arg) "arg"
#define str2(arg) "arg-ber"
#define str3(arg) "go to the arg"

Formerly DEC C did not do a replacement in str2 where VAX C does. Now
this replacement is done.

• ICA-48945: mixing of old-style and new style function prototypes:

117

The compiler now allows mixing of new-style function prototypes and old
style function definitions where the prototype parameters are not fully
promoted integer types (according to default argument promotion rules).
With this modification, all integer type combinations are allowed (including
signed/unsigned mixing). A warning is issued where we were issuing an
E level error in the past (no message is issued if in VAXC mode and the
integer types in the old style parameter definition match those in the
prototype, as in the code fragment provided in the SPR).

void f (char);
void f (p1)
char p1;
{}

$ cc/stand=vaxc foo.c
$ cc foo.c
char p1;
.....^
%CC-W-PROMOTMATCHW, In the definition of the function
"f", the promoted type of p1 is incompatible with
the type of the corresponding parameter in a prior
declaration.
at line number 3 in file DISK:[dir]FOO.C;1

In addition, the following will now correctly compile:

extern in (*f1())(int (*f2)());
int (*f1(f2))()
int (*f2)();
{ return 0;}

• HPXQ7084C, CDD datatype text size 1, can now be converted be converted
to an array of char or to a char using the new #dictionary keywords, text1_
to_array, text1_to_char.

• HPXQ74784 DEC C will no longer ACCVIO when an include file can not be
found.

• UVO101931 The will now generate correct code for the following program
/NOOPT:

118

#include <stdio.h>
typedef unsigned __int32 uns32 ;
main ()
{
uns32 y1, y2 ;
char str1[255] ;
y1 = 23 ;
y2 = 1 ;
str1[24 - y1 + y2] = ’\0’ ; // <- Used to Crash here

}

• DEC C no longer gives an erroneous INCOMPNOLINK diagnostic for the
following code:

static int a[] = {0, -1, 2, -3, 4, -5, 6, -7, 8, -9};
int main() {

extern int a[];
}

This used to occur only if the extern declaration for a appeared inside a
block.

• The compiler will now correctly give a diagnostic if C++ style comments are
used with /STANDARD=PORT or /STANDARD=ANSI89.

• Full support for 64bit integer constants is now available, e.g.

/* Value of constant cannot be represented as
* unsigned long, so it is unsigned __int64.
*/
unsigned __int64 foo = 0x7fffffffffffffffu;

5.31 Problems fixed in V4.1

• HPXQ97CFE: The maximum length of a source line has now been relaxed
to the maximum allowed by RMS.

• Fixed a problem which caused V4.0 to miss breakpoints on an if statement
when the OpenVMS/Alpha V6.1 was being used.

119

• Fixed a DST nesting error when a sequence of two or more typedefs
occurred in a recursive type declaration.

• HPAQ92A0F: Formally, the debugger referenced bitfields as longwords,
which caused problems when depositing values into those bitfields. This
problem has been fixed.

• An ECO kit is available to fix problems with printf and fcvt IEEE floating
point.

• Fixed a compile-time ACCVIO when compiling volatile structs with
/NOMEMBER_ALIGN

• builtins.h

The storage for _ _xxxQUE_MAP_ALPHA_TO_VAX and _ _REMQxI_MAP_
ALPHA_TO_VAX has been moved from builtins.h to the DEC C RTL in
order to reduce the number of bytes of storage required by the header file.

• curses.h

Changes have been made to improve the functionality of the default curses
package.

• float.h

On OpenVMS Alpha the D_FLOAT definitions of DBL_MAX and LDBL_
MAX were corrected.

• fp.h

The new header file <fp.h> implements some of the features defined by the
Numerical C Extensions Group of the ANSI X3J11 committee. Applications
making extensive use of floating point functions may find this useful.

Some of the double precision DEC C RTL functions return the value
HUGE_VAL (defined in either math.h or <fp.h>) if the result is out of
range. The float versions of those functions return the value HUGE_VALF
(defined only in <fp.h>) for the same conditions. The long double versions
return the value HUGE_VALL (also defined in <fp.h>). Note that for
programs compiled to enable IEEE infinity and NaN values, the values
HUGE_VAL, HUGE_VALF and HUGE_VALL are expressions, not compile-
time constants. Initializations such as the following cause a compile-time
error:

120

$ CREATE IEEE_INFINITY.C
#include <fp.h>
<P>
double my_huge_val = HUGE_VAL
^Z
$ CC /FLOAT=IEEE/IEEE=DENORM IEEE_INFINITY

double my_huge_val = HUGE_VAL;
.....................^
%CC-E-NEEDCONSTEXPR, In the initializer for my_huge_val,
"decc$gt_dbl_infinity" is not constant, but occurs in
a context that requires a constant expression.
at line number 3 in file WKD$:[LCRTL]IEEE_INFINITY.C;1
$

When using both math.h and <fp.h> be aware that math.h defines a
function isnan() and <fp.h> defines a macro by the same name. Whichever
header is included first in the application will resolve a reference to
isnan(). To force references to use the function instead of the macro,
enclose the name of the function in parentheses, e.g. (isnan)(arg) instead of
isnan(arg).

• math.h

The D_FLOAT definition of HUGE_VAL was corrected on both OpenVMS
VAX and OpenVMS Alpha.

• ints.h

Definitions for (u)int16 and (u)int32 were added for use by DEC C++
programs on OpenVMS VAX. This will allow DEC C programs using
(u)int16 or (u)int32 to be portable to DEC C++ on OpenVMS VAX.

• perror.h

Definitions for decc$ga_sys_errlist and decc$gl_sys_nerr were added for use
by DEC C and DEC C++ programs. These are provided for compatibility
with VAX C programs that made use of sys_errlist and sys_nerr.

• setjmp.h

A prototype for decc$setjmp was added.

• stat.h

Macros defining constants for group and other protection masks were
added to match the ones for ’owner’.

• stdarg.h

A definition for va_count was added.

• stdio.h

121

Modifications were made to the definitions of clearerr, feof, ferror such
that proper usage of these macros does not give warnings when compiling
/WARNING=ENABLE=CHECK.

• unixlib.h

Prototypes were provided for the following routines on OpenVMS
VAX: decc$to_vms, decc$from_vms, decc$match_wild, decc$fix_time,
decc$translate_vms.

5.32 Problems fixed since V1.3A

• Fixed several problems with SCA support.

• Fixed a problem in include file lookup behavior whereby the compiler would
search the wrong directory under /NESTED_INCLUDE=INCLUDE.

• Fixed compiler assertions generated by certain references to the PAL_
REMQxxx functions.

• Fixed a problem in the static initialization of bitfield structs of greater than
32 bits.

• Fixed a compile-time ACCVIO when compiling a structure containing an
array of incomplete structures.

• The compiler now correctly detects attempts to pass a pointer to an array
of pointers to const chars to a function expecting a pointer to a pointer to
an array of pointers to non-const chars:

122

static void f(char *argv[]) {}
static void g(const char *argv[])
{
f(argv);

}
> cc foo.c
f(argv);
..^
%CC-W-PTRMISMATCH, In this statement, the referenced
type of the pointer value "argv" is "Pointer to const
char", which is not compatible with "Pointer to char".

• A problem in which carriage returns immediately following comments
caused the compiler to crash, has been fixed.

• All known restrictions regarding initialization of variant_unions have been
lifted.

• A problem in which _align() did not result in correct alignment has been
fixed.

• In any of the /STANDARD={VAXC,RELAXED_ANSI89,COMMON}
modes, a redeclaration of a function with an empty argument list is now
compatible with previous declarations containing ellipses. The following
declarations are now compatible:

#include <stdio.h>
fopen();

• Problems with implicit conversions from unsigned base integer types to
their same sized signed counterparts have been fixed.

• A problem with bad code generated for uint64 switch statement values has
been fixed. Using int64 switch statement values is still problematic. See
the restrictions section below.

123

• An optimizer error involving left shifts in doubly nested loops has been
fixed.

• An internal compiler assertion involving conversions from int to address
has been fixed.

• A problem in which #pragma [no]standard could at times cause subsequent
code to be ignored has been fixed.

• A problem with /NESTED_INCLUDE causing an infinite loop has been
fixed.

• A problem involving incorrect assignment of psect RD/WRT attributes has
been fixed.

• A problem with aliasing of extern variables has been fixed.

• An /OPT=LEVEL=5 problem involving comma-listed post-increment
operators as the increment expression of a for loop has been fixed.

6 Support for STDARG.H and VARARGS.H
The standard header files STDARG.H and VARARGS.H which are provided
with the DEC C for OpenVMS Alpha have special builtin support to walk
the argument list. To walk the argument list of a routine, you must use the
standard macros in one of the above header files.

Programs that take the address of a parameter and, through pointer
arithmetic, independently walk the argument list to obtain the value of
other parameters, make the assumption that all arguments reside on the stack
and that arguments appear in increasing order. These assumptions are not
valid when using the DEC C for OpenVMS Alpha. To ensure correct results
the macros provided in the header files must be used.

124

7 Debugger support
OPTIMIZATION LEVEL: For satisfactory use during debugging, modules
should be compiled using /NOOPTIMIZE. Compilation with normal (full)
optimization will have these noticeable effects:

1. Stepping by line will generally seem to bounce forward and back, forward
and back, etc, due to the effects of code scheduling. The general drift will
definitely be forward, but initial experience indicates that the effect will be
very close to stepping by instruction!

2. Variables that are "split" so that they are allocated in more than one
location during different parts of their life times are not described at all.

FORMAL PARAMETERS: Formal parameters that are passed in registers,
while not handled quite like normal split variables, do share many of the
same problems as split variables. Even with /NOOPTIMIZE, such a parameter
will often be immediately copied to a "permanent home" (either on the stack
or in some other register) during the routine prolog. The DST description
of such parameters encodes this permanent home location and NOT the
physical register in which the parameter is passed. The end-of-prolog location
is recorded in the DSTs and will be used as the preferred breakpoint location
when a breakpoint is set in the context of an appropriately set module (so that
DST information is available to the debugger).

PLUS_LIST_OPTIMIZE: /PLUS_LIST_OPTIMIZE executables are fully
debuggable. If two or more variables in different files share the same name
and are statically declared, however, the debugger cannot discriminate between
them. Users should in this case do an "EVAL/ADDR FOO" for variable FOO,
and subsequently reference the address of the variable.

8 64 bit support
The compiler has builtin types for signed and unsigned 16, 32, and 64 bit
integer data types. They are intended for applications that must have integer
data types of a specific size across platforms that can provide the data type.
Note that some data types, for example 64 bit integer types, are available on
OpenVMS Alpha but not available on OpenVMS VAX.

The header file ints.h contains typedefs for the integer data types. For sake of
portability, we encourage the use of ints.h typedefs and highly discourage the
use of the builtin data types directly.

125

The content of ints.h is included below:

/*
* <ints.h> - Definitions for platform specific integer types
*
*
* Copyright (c) 1993 by Digital Equipment Corporation.
* All rights reserved.
*
* DEC C for OpenVMS VAX and OpenVMS Alpha
* DEC C++ for OpenVMS VAX and OpenVMS Alpha
*/

#if defined(__DECC) || defined(__DECCXX)
/* This file uses non-ANSI-Standard features */
#pragma __nostandard
#else
#pragma nostandard
#endif

#ifdef __cplusplus
extern "C" {

#endif

typedef signed char int8;
typedef unsigned char uint8;

#if defined(__DECC) || (defined(__DECCXX) && defined(__ALPHA))
typedef signed __int16 int16;
typedef unsigned __int16 uint16;
typedef signed __int32 int32;
typedef unsigned __int32 uint32;

#if defined(__ALPHA)
typedef signed __int64 int64;
typedef unsigned __int64 uint64;

#endif
#endif

#ifdef __cplusplus
}

#endif

#if defined(__DECC) || defined(__DECCXX)
/* This file uses non-ANSI-Standard features */
#pragma __standard
#else
#pragma standard
#endif

64bit integer constants are now supported.

126

9 Restrictions and known bugs
This is a list of known compiler restrictions and bugs.

• Compiler might emit erroneous BADANSIALIASn message

In some situations, the compiler’s loop unrolling optimization might
generate memory accesses in the code stream that never actually execute
at run-time, but which would violate the ANSI Aliasing rules if they were
to execute. In such a situation, the compiler might emit an erroneous
BADANSIALIASn message, where n is a number or is omitted.

If the violations take place only in machine instructions that will not
execute at run-time, these messages can be safely ignored.

To determine whether or not particular instances of a BADANSIALIASn
message are erroneous, recompile the module with the /OPT=3DUNROLL=3D1
qualifier. Any BADANSIALIASn messages that disappear under that
qualifier can be safely ignored, so you may want to add appropriate
"#pragma message" directives to the source, localized to the specific source
lines known to be safe. This is preferable to disabling the message for
the whole compilation, since in all other cases the message indicates a
real potential for code generation that will not work as intended. And
this is generally preferable to disabling the ANSI_ALIAS or loop unrolling
optimizations, since that would likely degrade performance, although
the amount of degradation is not predictable, and in unusual cases it
might even improve performance. As always, when making changes to
performance-critical code, it’s best to measure the impact.

• If the /FIRST_INCLUDE qualifier is used to specify more than one
header-file, and the first logical source line of the primary source file spans
physical lines (i.e. it either begins a C-style delimited comment that is
not completed on that line, or the last character before the end-of-line is
a backslash line-continuation character), then the compiler will give an
internal error. Workarounds are either to make sure the first logical line of
the primary source file does not span physical lines (e.g. make it a blank
line), or to avoid specifying more than one header in the /FIRST_INCLUDE
qualifier (e.g. use a single /FIRST_INCLUDE header that #includes all of
the headers you want to precede the first line of the primary source file).

• The complex data types are not available when using the /float=d_float
command line option. This is a permanent restriction.

127

• On versions of OpenVMS prior to V7.3, the long double complex type
cannot be used because the run-time support for it is not present.

• In V6.4 of Compaq C, the C99 functions cabs, cabsf, and cabsl cannot be
used. This is a temporary restriction.

• The _ _typeof_ _ operator, useful for gcc compatibility, causes a compiler
failure if compiled with the /ANALYSIS_DATA qualifier.

• Source code that uses CDD (either #pragma dictionary or the equivalent
#dictionary directive) and is compiled with the /ANALYSIS_DATA qualifier
may produce incorrect information for SCA.

• Function definitions compiled with #pragma use_linkage that used to
compile with the V6.2 compiler may encounter the following error when
compiled by a V6.4 or later compiler: "%CC-E-NOREGAVAIL, Unable
to satisfy program register allocation requirements". This is caused
by a linkage that attempts to preserve too many registers, leaving an
insufficient number of scratch registers for the compiler to generate the
function prologue. The solution is to change the linkage to preserve fewer
registers. If the linkage worked with an earlier compiler, it should only be
necessary to remove one preserved register to meet the requirements of
V6.4 and later compilers. This is a permanent restriction.

• The changed syntax for the /VERSION qualifier, which no longer requires a
source file to be specified, now issues a warning if other qualifiers are used.
To workaround the previous problem of the /version qualifier creating a
0-length object file, some users may have specified cc/noobject/version, or
cc/version/noobject. The former syntax now provokes "%DCL-I-IGNQUAL,
qualifiers appearing before this item were ignored" followed by the normal
/version output. The latter syntax, where other qualifiers appear after
/version, now produces "%DCL-W-IVQUAL, unrecognized qualifier - check
validity, spelling, and placement", and the /version output is not produced.
This will likely be a permanent aspect of the /version qualifier.

128

• Under /NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE, the sticky-
default processing for included files ignores filespec information from
top-level source files that are empty.

• There is a permanent restriction that header file searches involving
DECnet file specifications may not correctly interpret an access string with
password. This is because an expanded filespec is actually used to open the
files, and expanded filespecs are stored without the password information
for security reasons. Thus an attempt to open the file using the expanded
name will generally fail. The DECnet access should be made without the
need for a password (e.g. through the default account or through a proxy).

• Currently, the compiler allows you to take the address of any predefined
built-in function. This should be illegal and a compile time error should be
generated.

• Function argument lists longer than 255 longwords are not consistently
diagnosed.

• The globaldef keyword when used with an enum type definition does not
make all of the enumeration constants globalvalues in VAX C mode. If you
wish to make the values of enum constants available to another module,
put the enum type definition in a header file and include it.

• When data is placed into the LIB$INITIALIZE psect using the extern_
model psect naming controls, by default DEC C creates the psect with
quadword alignment like any other data psect, rather than the longword
alignment required for this special VMS psect. This is easily addressed by
specifying the alignment explicitly on the extern_model pragma. This is a
permanent restriction.

• The following VAX C pragmas are not supported. This is a permanent
restriction.

• #pragma ignore_dependency

• #pragma safe_call

• #pragma sequential_loop

• There is no support for the PDF (/DESIGN) and DWCI tools.

• The functions LIB$ESTABLISH, LIB$REVERT, and VAXC$ESTABLISH
are recognized by the compiler as builtin functions. There is currently a
restriction that the builtins do not return the previous condition handler as
their function result.

129

• If your code includes assert.h multiple times and uses the text library form
of inclusion, #include assert, the first include will work correctly. But,
the second include causes the compiler to issue an error message about
an invalid include file name. This is because assert have been defined as
a macro within assert.h, so the compiler is looking at the macro expanded
file name, which does not exist. The assert macro may be used elsewhere
without any problems.

Digital recommends that you avoid the text library form of inclusion for
assert.h. Use #include <assert.h> instead.

• DEC C may give redundant diagnostics for FLOATOVERFL,
FUNCREDECL, and PROTOSCOPE3. Two diagnostics will point to
the same location. Fixing the problem makes both diagnostics go away.

• The diagnostic for array declarations with more than INT_MAX elements
is misleading. It should state that there are too many elements in the
array.

130

