RAXCO VAX/VMS Performance Management Seminar

Section IV -- TInput / Output

File System -- User Interface

Systems typically spend 5 to 40% of their CPU time
creating, deleting, opening, closing and searching for
files. These activities, will shall be called "file
system transactions” are rather CPU intensive. They
are performed by the XQP, which in turn, invokes many
calls to the VMS lock management facility.

= Low=

If a VAX cluster is active, the CPU demands of the;l
functions increase significantly due to the volume of
inter-CPU communication which may be needed and the
increase in the number of lock manager calls required.

File Allocation and Extension

The allocation of space, either to a newly created
file, or to expand an existing one, is, in general, a
costly function, but if space allocation is done by
default methods it produces files which perform

poorly.

When creating a file, the normal default in user
software 1is to allocate little or no space and then
frequently expand the file as it is written. Trunca-
tion of unused space may or may not occur upon file
closing. This can dramatically slow the software.

Mechanisms exist to declare the initial amount of
space to be allocated and to set an amount which will
be allocated each time the file must be extended.
Options can be set to autoamatically truncate upon
closure. These minimize allocation efforts by getting
it all done in one or a small number of steps, and
eliminate wasted space.

Files exist as one or more pieces on disk -- each
piece 1is called an "extent” or “fragment”. If the
file 1is completely contained in one fragment it is
said to be contiguous. (This should not be confused
with a file which is "marked" contiguous -- such a
file not only must be contiguous, it may not be ex-
panded unless the result would be contiguous.)

7\:
(4]

Notes:
Vv’\’\‘_‘, “\J':* 1
oy /
= e - / s
i:i_rr(‘«:_'\‘i)J: :—~
e E, “1 =
Page 4.1

Copyright RAXZCO,Inc. 1986 Duplication in any manner prohibited.

RAXQO VAX/VMS Performance Management Seminar

.Files which exist in many pieces are said to be frag-
mented. If the fragmentation is severe, the result is
poor performance due to two separate reasons:

"Window Misses”

then a file is opened, information about only
ACP WINDOW fragments (7 by default) is made
available to the disk driver. If an access is
made outside the area covered by these frag-
ments a “"window miss" occurs. To get the
needed information requires an access to the
disk structure database and 10 to 30 wmilli-
seconds processing time (780/8200).

Split I/0's
When an I/0 is issued that crosses a fragment
boundary, two or more physical I/0’s must be
performed to complete the request. The extra
cost is at least 1 millisecond of CPU time and
5 to 60 milliseconds elapsed time.

Files can be allocated in one of 3 ways:

Default
Allocate without regard to contiguity. The
result is generally highly fragmented.

Contiguous
Allocate contiguous space, or fail.

Contiguous Best Try
Allocate file in as few fragments as possible.
(VMS has a long-standing bug where it will
only allocate the three largest fragments on
the disk to the file (if needed), then allo-
cates additional space using the default
method.)

Contiguous style allocation may take longer (but only
for medium, not very small or very large, size files),
but produces significant performance gains when the
file is used.

The success and speed of the disk space allocation
process is materially affected by the availability of
contiguous free space on the disk. If there are no
large free areas of space on the disk, allocationms,
especially contiguous style, take longer. Moreover,

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 4.2

RAXCO VAX/VMS Performance Management Seminar

given the bug in the contiguous best try algorithm, if
a file can‘t be allocated in 3 or fewer fragments, the
result will be a highly fragmented file. If wmost
files are allocated contiguous best try, it will tend
to increase the availability of contiguous free space,
since as files are deleted, the freed space will be
contiguous. However, over time, the contiguity of the
free space will break down, absent periodic steps to
re-organize the disk. .

In general, the more free space there is on a disk,
the easier it is to allocate space to files.

However, there 1is no valid reason why an application
under VMS requires completely contiguous files.

WARNING: W®hen doing a DIRECTORY/SIZE the value dis-
played as the file “size" is not the file size. It is
the RMS EOF pointer, which is maintained only by RMS.
It may be of any value whatsoever for a legal VMS
file. The true file size is displayed by
DIRECTORY/SIZE=ALL.

4
VMS includes a mechanism called "Highwater Marking”.
If on, it causes zeroes to be writtenm to all file
space when newly allocated to a file. It is on by
default. To turn it off for a given volume: SET
VOLUME /NCHIGH.

Directories

Directories are sequential lists of file names with
the related File IDs. They must be searched top to
bottom. VMS may have available a one letter index per
directory block, but in general, long directories
require long search times. Files should be organized
into small sub—-directories. VMS does have an effi-
cient way of navigating sub-directory structures, so
long as searches do not have to be run through many
sub-directories.

User productivity will increase if the user has files
well organized. long directories lead to masted disk
space and wasted user time.

Notes

Wa DT A N |
/7— Y — ”\\]C:\v
-}6 Mf\,\ ~ PAaamo—d -
™ AN r\vu(\ NN ey

[‘J«C AL,

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited. Page 4.3

)

RAXCO VAX/VMS Performance Management Seminar

WARNING: Sub-directory structures can go up to 16
levels deep. Do not allow them to go beyond 8 as
levels beyond B can not be effectively handled with

BACKUP and other utilities. To detect:

DIRECTORY dev:[*.* % & & & & 434 DIR

Files Opens and Closes

Excessive opens and closes are a frequent prograsming
error. Files should be opened when first needed and
closed only when no further use will be made of thesm.

Use of the File System as a Librarian

Many applications create large numbers of small files,
each holding a piece of the database being maintained.
Reliance is placed on the file system to organize the

data. In effect, the file system is used as a
librarian.
This 1leads to huge directories, long searches, fre-

quent allocations and deletes, and uncountable opens
and closes, all of which consume vast amounts of
resources. On clusters, the problem is magnified.

The VMS librarian utility does a much more efficient
and controllable job. For very intensive applications
a librarian procedure specific to the application
should be developed.

Disks in a VAX Cluster

The VAX cluster scheme allows a disk to be open to
full access to multiple VAXes simultaneously. This is
accomplished by having one VAX act as a “"traffic cop”
for any given disk. When any other VAX wants to per-
form a file system transaction on that disk, it mst
communicate with the traffic cop VAX to get permis-
sion. The added cost of this is about 15 milliseconds
of CPU time (780/8200) per file system transaction per
involved VAX.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Fethode

Page 4.4

RAXCO VAX/VMS Performance Management Seminar

In a "wide open"” VAX cluster (all disks are open to
and used uniformly by each cluster member) this addi-
tional processing typically results in amn overhead
consumption by each VAX of 5 to 20% of its CPU time to
support just the coordination of the file system
transactions.

In addition, whenever a disk is mounted to more than
one node, regardless of which CPU performs the file
transaction, extra lock manager requests are used over
the case where only one CPU has the disk wmounted.
Typically there are 2 to 5 extra requests using 3 to 8
milliseconds of CPU time (780/8200) per file system
transaction.

Implications

Major files should be created with explicit speci-
fication of an allocation size appropriate to the
application. Any file of significant size or use
should be allocated contiguous best try. Most
languages provide mechanisms to effect these
options. If not, use BMS directly.

Disks must be pericdically reorganized to make all
files and the free space as contiquous as
possible.

Avoid letting disks run over 30% full if files are
frequently allocated on them. Not only will
allocation steps be faster and the result (when
requested) more contiguous, but there will be
fewer cases of run failures due to exhausted free
space and, therefore, excessive consumption of
resources due to re-runs.

If fragmentation is unavoidable, files should be
opened with large windowus. Critical applications
Eay use cathedral windowing.

Avoid running wide open VAX clusters. Speci-
fically allocate workload across machines so that
each disk is wused primarily by one VAX and as
little as possible by every other VAX. Make sure

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 4.5

RAXCO VAX/VMS Performance Management Seminar

the CPU which is the prime user of any disk is the
CPU which manages the disk (eg., is the first CPU
to mount it).

Avoid long directories.

Avoid unnecessary directory searches. Example —
frequent calls to PURGE.

Turn off volume highwater marking if security
doesn’t require it. If security does, a better
approach 1is to enforce the use of SET FILE/ERASE
and DELETE/ERASE on sensitive files.

Occasionally do SET FILE/TRUNCATE on files to
eliminate wasted space, but only to those files
for which the 1/0 routines maintain the EOF
pointer by RMS standards.

File System - System Manager Control

Disk Cluster Size

The disk is allocated by groups of blocks called
"clusters", The VMS default cluster size of 3 is
totally inappropriate due to the default BRMS 1I/0
transfer sizes which are in multiples of 4. Larger
cluster sizes will improve performance, but waste disk

gpace.

BCP Caches

The file structure data base consists of the various
data defining files and the disk, and an outer layer
of file organization called directories. This infor-
mation is stored on the disk and accessed and manipu-
lated by the XQP.

The XQP has a set of caches against this data in an
attempt to minimize actual I/0's when parts of the
database are re-accessed by users. (These are called
ACP caches because, prior to V4, the functions of the
XQP were handled by a separate -- and considerably

7 1z B'ﬂ"\ N
J 4

RS i) O |
’

Q-

-

@)

Copyright RAXCO,Inc. 1986 Duplication in any mammer prohibited.

RAXCO VAX/VMS Performance Management Seminar

more efficient -- process called the disk ACP.)
BUTOGEN sets initial sizes for these structures. Oc-
casionally an adjustment of the cache sizes can pro-
duce performance improvements in the XQP or will free
memory for other purposes.

MONITOR reports the hit rate for each cache; in gen-
eral, if reducing a cache size doesn’t lower the hit
rate or the absolute increase in the volume of disk
I/0's which results is minimal, memory can be saved
and/or hard faults reduced. If increasing a cache
improves the hit rate, XQP performance has been im-
proved at the expense of memory. If XQP activity is
light relative to the caches concerned, the loss of
memory may cost more than the value of the gain in XQP
performance.

However, note that, with one exception, the caches are
stored in paged system memory. Rhat is reported as a
cache hit by Monitor may have caused a page fault,
and, if the number of accesses to the cache relative
to its size is rather small, the fault may have been a
hard fault. Thus the saved I/0 is illusory -- in
fact, if a hard fault did occur, the cost of the hard
fault was more than that which the simple I/O by the
XOP would have required. Moreover, a large cache,
which 1is accessed infrequently, will tend to push
other pages out of the secondary caches, harming the
performance of all work in general.

One should be very reluctant to expand the size of
these caches as such may actually worsen XQP perfor-
mance or overall system performance. An expansion is
only mandated if the access rate is very high.

In sum, for the vast majority of cases, adjustment to
the size of these caches will have 1little positive
affect on system performance. A typical exception is
shere the number of file system transactions is ab-
normally large. Hosever, that, in and of itself, is a
significant performance problem which should be di-
rectly addressed. Adjusting the cache size is but a
temporary expedient which may serve to make a very bad
gituation very slightly less bad.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 4.7

RAXCO VAX/VMS Performance Management Seminar

The caches and parameters which define their size are:
Directory -- ACP_DIRCACHE

A cache where the actual contents of directory
files is stored. If users make frequent file
accesses and tend to have large directories
(and won’t shorten them) or work in 1lots of
directories at the same time (and won't better
organize their files), an increase may be
helpful, but will consume a large amount of
BEMOrY. If a relatively small amount of di-
rectory space tends to be in use simultaneous-
ly, or the rate of file lookups is very low,
reduce its size. Note: if users tend to work
in many directories simultaneously, an in-
crease in the size of this cache will be
useless without increasing ACP_DINDXCACHE.

Extents -- ACP_EXTCACHE

This cache is a list of contiguous empty areas
on the disks. If there is frequent allocation
of contiguous or contiguous best try files, an
increase may be helpful. The space consumed
iz relatively small. If disks tend to be
relatively full, ACP_EXTLIMIT should be raised
to about 500, which may help reduce
frageentation.)

Index Slots -- ACP_FIDCACHE

A cache of the index to the index file. If
file allocation and deletion 1is frequent,
increasing this may help. This is a very
small cache.

File Headers -- ACP HDRCACHE

File headers are 512 byte blocks (generally 1
per file, but occasionally more) which define
and describe a file. The cache is useful if
individual files tend to be referenced
repeatedly.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 4.8

RAXCO VAX/VMS Performance Management Seminar

Disk Cluster Map -- ACP_MAPCACHE

This cache holds information on available disk
space. If file allocations and deletes are
frequent it may help to enlarge it.

Disk Quota -- ACP_QUOCACHE

This cache should be large enough to hold
entries for as many UIC's per disk as are
active at any given time and will be
allocating or deleting files. Entries are 32

bytes long.

Directory Index -- ACP_DINDXCACHE

This parameter controls the number of direc-
tory “File Control Blocks" (FCB’s) which will
be cached, system wide.

The value should be set to the total number of
directories likely to be active in the system
at any one time.

This value should be set conservatively,
as the space used is non-paged pool.

(Note -- The /ACCESSED qualifier to the MOUNT
and INITIALIZE commands and the SYSGEN
parameter ACP_SYSACC which, prior to VMS 4.0,
controlled this cache size for ODS II disks
noxn have no effect.)

The parameter ACP_DATACHECK is set wrong by AUTOGEN.
It should be zero. There is no need for write checks
on modern disk equipment.

Implications

Change cluster size on all disks to 4 or a mul-
tiple of 4 if excess space can be tolerated.
Consider devoting a disk with a large cluster size
to only large files.

Excessive file functions are a user or software
problem and should be addressed via system tuning
only as a last resort.

Notes

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Page 4.9

RAXCO VAX/VMS Performance Management Seminar

1/0 Operation Capacities

Disk Drive Operation Rate Limits
There are 3 steps to completing an access on disk:

Positioning -- the disk arm must be moved to the
proper cylinder.

Latency -- the drive must wait for the desired
sector to spin under the read/write head.

Transfer -- the data must be transferred to or
from the CPU.

N\

Positioning is the largest component in terms of time
required. Due to the multi-user nature VMS and its
disks and due to the fragmentation of files, is almost
always required.

The transfer time varies by the size of the I/0, but
is still short relative to positioning time except for
unusually long transfers.

Different types of disk devices work at different
speeds. The chart summarizes those speeds for devices
commonly found on VAXes and computes an average total
disk operation time. It also shows a maximum opera-
tional rate for the disk under normal circumstances.

If the operation rate observed for any disk regularly
approaches or exceeds the indicated values there is
significant contention for that disk and response
degradation is probably occurring. In extreme cases,
the CPU may be experiencing idle time while waiting
for disk I/0. Actions should be taken to address the
problem.

Usually a single application will be found which
is generating excessive volumes of I/0. It should
be fixed.

If it is the case that it is the sum of the demand
of many users which is causing the overload, then
some reallocation of the disk files across several
disks will be required.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

-Notes

Page 4.10

"l

~RAXCO VAX/VMS Performance Management Seminar

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

A’ \f}v ;/y
/§)f
~? ' ‘Disk Device Timing - Average VMS I/0 Operations
\T ,5 ﬁ \
NV \i Transfer Accesses
Disk Type Average Average Transfer Time For Total Possible
and Seek Latency Rate -8k Bytes Access per
Interface Millisec Millisec Mb/sec Millisec Time Second
Fujitsu M2351 18.7 6.3 1.8 4.5 30 34
Massbus
' ujitsu M2361 20.7 6.3 2.2 3.7 31 33
P r\(\/ /7F Massbus
.~ > RPO7 -=> 31.3 {-- 2.2 3.7 35 29
fl\-. cwn st .
CDC 9771 16.0 13.9 1.8 4.5 34 29
Massbus 3
-2 = ’ \:.(4 - /\VN’
sx=% —»C 9772 © 16.0) 8.3 @W 3.7 28 36
W Massbus ‘
¢ T RMBO 25 8.3 1.6 5.1 38 26
 RABO/ 25 8.3 .9 9.0 42 24
E ikuﬂSCSO -—1
RMOS/RMO3 25 8.3 .98 8.2 42 24
(DC9766,75
| o
[rass 28 8.3 r~ .9 9.0 46 22—
"~ |_HSCs0 % i
[Rraso/ 25 8.3 | @ 137 46 22 |
L?DASO f “m/ﬂmJ
—{ Ragl/ 28 8.3 = .6 13.7 50 20 ——
... UDASO
\
[raeo/ "\ *’@ 8.3 9~ 9.0 59 17
E HSC50 |
| RA60/ 41.7 8.3 e 13,7 63 16
EQMEDASO
RKO7 -=> 37.0 &-- .54 15.0 52 19
RLO2 -=> 55.0 ¢-- .51 16.0 71 14

Page 4.11

RAXCO VAX/VMS Performance Management Seminar Notes

RAxx Disks, the HSC50, and the UDAS0.

A highly touted "“feature" of the HSC50 is called
“elevator optimization". This is an ability to reorder
disk transfer requests-to minimize the amount of time
the disk arm spends travelling across the disk. Under
normal VMS circumstances it is useful only in cases of
severe disk contention where it will slightly alle-
viate the response degradation. For this feature to
accomplish anything, there must be a queue of pending
1/0 requests at the drive. If there tends to be such
a queue under VMS, response is usually already unac-
ceptably bad. This feature, because it is not prior-
ity controlled, can cause undesirable results in cer-
tain circumstances.

The ability of the HSCSO and UDAS0 to optimize latency
delays is of some value. It can speed access by up to
10% in some cases, particuarly if the file is highly
fragmented. Reducing the fragmentation is a more
effective procedure.

As the timing chart reveals, RAxx devices are consi-
derably slower, particuarly when on a UDASO, then shen
connected via Massbus interfaces. This is because,
although these disks have relatively fast transfer
rates, these controllers can transfer to the CPU only
at considerably slower rates.

Channel Capacity

Hith the exception of the HSCS0, disks are connected
to the VAX via simplex channels. That is, the channel
can only do one thing at a time — transfer data or
transfer I/0 requests. (Note that as many as all
disks on the channel can be positioning simultane-
ously, or as many as all but one with that one trans-
ferring data.) The speed of the channel (except the
UDAS0) is the disk transfer speed. If a channel is
busy transfering more than 50% of the time, contention
is probably occurring and response delays will ensue.

For example, a channel operating a set of Fujitsu
M2351 ("Eagles") at 50% busy can be transferring 1600
blocks per second -- 100 average I/0‘s per second can
be accommodated. The total disk I/0 demand of typical
VAX workloads (including 8x50’'s) seldom comes close to

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited. Page 4.12

RAXCO VAX/VMS Performance Management Seminar

these numbers and there is almost never a need to
aplit disks among multiple Massbusses or Massbus type
interfaces. The exception is with high volume I/O
applications (or moderate volume, on the UDAS0) which
do large data transfers. Because of its inefficien-
cies, if RMS 1is used to do the I/0, it is almost
impossible to exceed the capacities of Massbus type
channels. (Emulex and System Industries SBI type
interfaces are functionally equivalent to Massbusses.)

The CI bus is multiplexed and can do several transfers
at once. Given the bus arbitration activity and
inter-CPU traffic which occurs in clustered environ-
ments, predicting its data handling capacity is diffi-
cult, but is likely to fall in the 3 to 5 megabyte per
second range. Many multiple 8600 clusters will find
one CI inadequate, as may clusters with 5 or more
780°s and 785‘s and large amounts of I/0 processing.

VMS provides an ability for CPU’'s which are connected
by a CI bus to do I/0 on a disk locally connected to
another CPU (such as with a Massbus). Doing so more
than triples the CPU cost of the 1/0, both in the
effort needed to set it up, and the slowdown effect
due to memory contention.

Implications

For fastest performance, avoid DEC disk subsystems
and use Eagles or CDC XMD's with third party
interfaces, VMS cluster leogic works perfectly
well with third party equipment with multiple CPU
porting to the controllers. In addition, System
Industries offers an altermative, and more effi-
cient, clustering approach.

Fastest DEC performance is from RMBO drives.
Avoid RA60‘s -- the positioning is too slow for
most intensive applications and its high transfer
rate is negated by the HSCS0 or UDASO.

Respond to disk contention as a programming
problem first.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 4.13

RAXCO VAX/VMS Performance Management Seminar

Avoid allowing 1/0 access to devices connected
locally to one CPU from another CPU over a CI bus.

Choice of Media

For high volume, sequential file applications, the
most effective media is tape, both for performance and
media and handling costs.

The performance of DEC layered software (RMS) for tape
access is miserable. But VMS itself (QIO access) is
exceptionally efficient. It is relatively easy to
develop a suitable software access layer for high
level applications. »

DEC start/stop tape drives (e.g., the Tz78, TU77,
TS11) are overpriced and too unreliable for signifi-
cant general purpose tape processing. DEC streaming
tape drives, on the other hand, exhibit exceptional
reliability. The Tx81, because of the use of DSA
architecture, can perform effectively if software
capable of streaming it is used.

Disk Accessing Techniques

RMS and Additional DEC Software Access Levels

RMS tends to be inefficient for all forms of I/0.
Using additional 1layers (high level language inter-
faces) adds to the inefficiency.

RMS has many options, with some (seldom the defaults)
providing improved efficiency. Some high level
language interfaces can operate some of the options.
Under Fortran, with its data structure definition
facility and the definitional libraries of RMS control
structures, RMS can be called directly from Fortran
with ease.

Writing efficient replacements for RMS functionality
is relatively easy (except for complex indexed ac-
cess), even in Fortran.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

-----Notes

Page 4.14

RAXCO VAX/VMS Performance Management Seminar

Sequential Access

If applications can be designed to work in a sequen-
tial mode, great efficiencies will be achieved. Any
operation which is going to access a substantial por-
tion of the data in a file should do so sequentially,
even if additional sorting steps must be introduced.

Fixed length records are almost always more efficient
than variable. Unlegs the wasted file space will be
gross (over 950%) a fixed format should be chosen.
Fixed length records have the added advantage that
they may be accessed randomly.

If large segquential files are being used, a large
buffer ("multiblock count") should usually be employed
to minimize the number of I1I/0 transfers. Buffer sizes
of up to 65k bytes are possible, and not necessarily
unreasonable.

Multiple buffers and the Read Ahead and Write Behind
options are never appropriate for sequential files on
multi-user systems. They waste memory and add over-
head. These options are set under Fortran and other
languages by default.

Under RMS, use “LOC" mode whenever possible when
reading files (sequential or otherwise). This avoids
moving large blocks of data from buffer areas.

Random Access
Several forms of random file access exist:

Indexed
Powerful, but general purpose, and conse-
quently a user of large amounts of resources
(CPU time, memory and disk storage). Other,
simpler techniques should be employed if
possible.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 4.15

RAXCO VAX/VMS Performance Management Seminar

Direct Access
Sequential files with fixed length records may
be accessed randomly by record mumber. Very
efficient and quite useful if a simple count
index is natural to the data or can easily be
maintained. For simple key stuctures, build
your own index.

Relative
A access scheme for variable 1length records

where RMS expands the records to fixed length
and adds a data length and a data presence
flag. User software can probably do a better
job of these functions in almost all cases.

Access by RFA ("Record File Address")

RMS maintains an RFA for each record in a
sequential or indexed file. If these values
are saved when the file is created or 1later
accessed, any record can be efficiently re-
trieved from the file by specification of its
RFA. (RFA‘s are unique over the life of an
indexed file -- if a record is deleted, its
RFA will never be reused.)

Accessing files randomly requires careful attention to
buffer size (Multiblock Count) and the number of buf-
fers in use (Multibuffer Count) to balance the number
of physical 1I/0's and memory use in such a way that
overall efficiency is maximized. Buffer sizes should
be kept small except where there is a high 1likelihood
of accessing sets of records which are physical
neighbors of each other. Defining multiple buffers
with RMS is tricky, since the user has no control over
which are retained and which are overwritten. Exper-
imentation provides the only reliable answers to whe-
ther increasing the buffer counts will improve
performance.

If some form of deterministic data caching would be of
use, RMS will almost always have to be avoided so that
an effective scheme can be implesmented.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 4.16

RAXCO VAX/VMS Performance Management Seminar Notes

Indexed Files

Khen using Prologue 3 files, be sure RMS is getting
effective data compression (use ANALYZE). In critical
cases, timing comparisons between Prologue 3 and 1 or
2 should be made.

Bvoid multiple keys unless the file is relatively
permament and not updated frequently, or at least, not
during times when there are other demands for the CPU.
If one of the keys is an artificially constructed
“gserial number", use the RFA instead. If a secondary
key will only be used for sequential access, consider
keeping it outside the file in a separate file with
RFA’s to the data file. As records are added to the
file, append data to the reference file. Before using
it for access, sort it.

The key which will be used most often for sequential
or near sequential access should be the primary key.

When doing batch updates, they should be done in order
of the primary key. Sort the update transaction data
first.

If updates will be frequent, select an appropriate
fill factor and introduce a regular program of file
reorganization.

- Bucket sgizes should be started at what ANALYZE sug-
gests, but for heavily used files, experimentation
should be carried on from there. If access pattern is
anything remotely near sequential (as opposed to pure-
ly random) considerably larger bucket sizes will al-
most always perform better. The contentions in the
VMS 1literature that larger bucket sizes do not help
unless the number of index levels are reduced, or
that, at best, larger bucket sizes allow one to reduce
the number of I/0's at the expense of CPU time are
totally false. Generally, multiple areas should be
used (at least one for each key and one for the data)
so that different buffer sizes can be chosen for each.

Setting effective buffer counts requires care and
experimentation. Different values should be chosen
for each different type of use of a given file. For

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited. Page 4.17

RAXCO VAX/VMS Performance Management Seminar

sequential access, only 2 should be used. For random
access, the effectiveness of larger numbers depends on
the 1locality of access and the size of the file.
Since RMS’'s caching strategy favors keeping index data
in memory, few (if any) previously accessed data buf-
fers will ever be available without redoing the I/0.

Shared Access by Multiple Processes

Read Only

Global buffers are useful if the same areas of
the file are likely to be needed by simultan-
eous users on the same CPU. This would gener-
ally be true for indexed files, unless separ-
ate users are accessing by different keys.
Global buffers should not be used with sequen-
tial access.

Read / Hrite

Thiz must be avoided at all costs for high
activity files if effective performance 1is
desired. The highly generalized VMS Distrib-
uted Lock Manager consumes large amounts of
CPU times -- 1 to 3 milliseconds of CPU time
(780/8200) per request -- and each RMS Get or
Put will typically result in more than one
Lock Manger access. To this must be added the
time spent by RMS to deal with the locks. If
multiple CPUs are accessing the file, the time
spent per lock request can increase by 200% or
more.

Better strategies exist. For example, the
lock manager can be bypassed and a specific
control mechanisa erected using shared memory
and CEF's or AST's for communication. (Mail-
boxes should never be used in active inter-
process communication situations.) Or, a
single process can be designated the I/0
server and requests handled with shared mem
ory. In multiple CPU environments, the shared
memory would be in an MA780, which, as an
inter CPU communication device, is orders of
magnitude more efficient and powerful than the
CI bus.

Another strategy is to have the application

handled totally by one process which supports
multiple control flows. The ease of doing

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 4.18

RAXCO VAX/VMS Performance Management Seminar

this under VMS is one of its greatest fea-
tures, yet one seldom sees it in use, probably
because it isn‘t as "“fancy" as other
approaches.

Properly handled, approaches along the 1lines
suggested above can be 90% more efficient for
multiple access applications.

Implications

Never rely on process or system or language de-
faults for serious of use RMS. Even those sug-
gested by ANALYZE must be questioned. Options °
must be set file by file, and for many options,
by type of use for the same file.

Never turn off the deferred write option under
RMS, unless reducing the risk of data corruption
due to a system crash is worth a very serious
performance loss. (Note that this feature does

Notes

not absolutely insure against corruption.) Be = Jor r§ﬁ”

aware that it is off by default in some languages
(COBOL) .

To reliably determine the effect of an RMS param-
eter or structural change, comparisons of the
actual use of the software is vital. It is very
difficult in any synthetic testing to simulate the
access patterns and load conditions experienced in
actual operation. One should make a change, test
for correctness and not unacceptable performance,
then install the changed version as the production
gystem. Assemble performance data from before and
after the change and compare.

Database Management Systems
These systems (should):

lower development time and 1labor (high 1level
functionality)

Bllow applications to change with 1less software
revision effort.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Page 4.19

RAXCO VAX/VMS Performance Management Seminar

Their drawback is exceptionally large resource
consumption.

Questions which must be asked before deciding to em -
ploy thea (and which seldom are):

Are the development savings (if any!) worth the
performance cost?

Does the package force pounding square pegs into
round holes and is it worth the 1less effective
gsolution which ensues?

Is the application really subject to frequent
change? Can the nature of the expected changes be
forecast and appropriate flexibilty built into a
lower level solution?

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 4.20

