RAXCO VAX/VMS Performance Management Seminar

Section e ramming Techniques

This section discusses programming techniques which
will result in substantial performance improvement.
It is hardly exhaustive; common sense and elementary
matters are not included (e.g.,

4 =B*B, not A =PB*2.0)

Fortran is used as the demonstration language. Many of
these points apply to other 1languages, though the
programmer frequently does not have as much control
over thes. Fortran 1is the language of choice for
gerious development work under VMS when done by pro-
fessional prograsmers:

- it tends to be portable

- it has high level constructs, for when their use
is tolerable

- it is a low level language, so it can be con-
trolled to operate efficiently

- among “standard” 1languages, none is more pro-
ductive for the skilled programmer and most are
worse (BASIC and COBOL in particular, including
use for DP applications)

- most VMS services can be accessed easily
- it is as complete a language as can be found

- it tends to be more flexible than full high level
languages (COBOL, BASIC, PL/I)

- it promotes structured code, but allows deviations
from strict structural rules when such are

appropriate

- data structures are under the programmer’s con-
trol, a must for good virtual performance

- the VMS compiler produces relatively good object
code.

The new VMS V4 Fortran compiler has an improved optim-
igser which will produce improved code in many cases
(on average, expect 5%). Homever, there will be cases

Copyright RAX(O,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 7.1

RAXCD VAX/VMS Performance Management Seminar

where it won‘t, and in some cases the V3 compiler is
better (particuarly for complex logic flows as opposed
to looping and indexing). Bugs have been noted in its
compiled output with the only workaround being to
compile with the /HOOPTIMIZE qualifier. This results
in code which performs terribly.

A major programming concern is to reduce the amount of
memory used:

Use smaller structures shen possible —- I*2, BYTE
-- if values to be stored will fit. For one byte
strings, use BYTE, not CHARACTER*1. Exceptions:

- if values will be used as array indexes, use
I*4

- if a location is frequently tested as a 1lo-
gical value, use LOGICAL*4, but not if the
value 1is frequently set and reset and only
tested in one or two places or infrequently.

Make sure multi-dimensional array filling and
referencing is done primarily along the innermost
index. Avoid data structures which are filled in
a scattered, non-clustered pattern.

Use the new record definition facility to create
tight table formats for tables with multiple data
types. Elements which are used to make referenc-
ing decisions should be separated into parallel
tables.

Keep all elements referenced by a particular rou-
tine or program phase in a physically compact
memOry area. Organize common blocks carefully to
acheive this. This technique also aids debugging.

Ezecution speed is increased if code 1length is
shortened:

Use 1logical tests wmherever possible instead of
zero/non-zero flags. Bit flag lists are helpful,
but don’t use the intrinsic functions ISHFT,
IBSET, BTEST, 1IBCLR or ISHFIC as they are imple-

Copyright RRAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 7.2

For

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

RAXCO VAX/VMS Performance Management Seminar

mented by actual subroutine calls, not in-line,

code. Use:

IF (FLAG/4) THEN
instead of

IF (BTEST(FLAG,2)) THEN
(but be careful of negative values).

Keep all frequently accessed scalars and small
arrays within 127 bytes of the start of a common
block or $LOCAL. To control placement place vari-
ables in explicitly organized common blocks and
use the cross-reference listing to verify offsets.
This allows one byte operand offsets instead of 2
or 4.

Minimize argument lists on subroutine calls except
where:

- the actual arquments are actually different
variables from call to call

- a dimension can be cut out of array referenc-
ing (ie., the subroutine confines itself to
work on only one vector or plane of an array.)
Note that in some cases the compiler may rec-
ognize this and optimize for it.

Collect subroutines normally called during the
game phase of processing, but not calling each
other, into one routine using ENTRY statements.
Avoid multi-purpose entry points where a purpose
selection variable is passed as an argument. Use
separate entry points for each function.

execution speed in general:

Avoid short subroutines and statement functions
that won‘t be called in line. (See page 1-9,
Fortran User’s Guide.) A subroutine call and
return requires a minimum of 25 microseconds
(780). Duplicate code where necessary.

Be careful of multiple element "IP" tests. The
onject code produced by Fortran evaluates thea
from the last element to the first, except where
they are different levels of complexity, in which

Notes

Page 7.3

RAXCO VAX/VMS Performance Management Seminar

case the simplest are evaluated first. This is
contrary to ANSI standards and natural expecta-
tions.

Table gsearches are normally a major user of com
pute time resources. Adapt techniques which take
advantage of natural data or reference ordering.
Mo single "hi tech" search routine is best for all
cases. Sort data extermally if it reduces
searching. .

Simple string to numeric conversions (or numeric
to string) should be done directly or with the
library routines (OTSSCVT _xx xx). Do not wuse
Fortran internal reads and writes.

Avoid wuse of LIBSGET VM, as it is very slow.
There 1is no processing cost if large arrays are
declared in the code but not used during execution
(agsuming the portion that is used is effectively
clustered). Calculating addresses at run time can
be very time consuming.

Avoid dynamic storage declarations in any form.
Turn off bounds checking for production operation.

Avoid tortured code constructions to adhere to the
"rules” of structured programming (such as "never"
using a GO TO.) The real world has chosen not to
conform to the rigid structure acadamicians would
1ike it to have. As a quideline, structured pro-
gramming is wuseful; as a religion, it is
debilitating.

Avoid designs wmhich call for sub-process creation.
(The DCL command "SPRRN" should be outlawed from
general usage.) Sub-process creation and many
forms of inter-process communication are very
expensive and rarely necessary. Under VMS (and
easily accessible in Fortran) are any number of
features which make parallel processing logic very
easy to implement within a single process.

If you must have multiple processes, inter-process
control and communication should be handled via

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Hotes

Page 7.4

RAXCO VAX/VMS Performance Management Seminar

CEF‘'s, AST's and global areas. The lock manager
and mailbozes should be avoided.

DCL is inefficient -- rewrite frequently executed
routines in Fortran. When DCL is used, eliminate
comments, except at the end of the file after a
SEXIT 1line. Minimize € procedure references --
merge the commands in. Avoid repetitive calls to
the same function. Eg.,, don‘t do

$DELETE A.A;

SDELETE B.B;

rather
SDELETE A.A;,B.B;

If you must use Fortran I/0:

Avoid formats (except "(A)" or “(Q,A)") wherever
possible. Of course, for report generation this
high 1level facility is invaluable and would only
be replaced in intensive, repetitive situations,
and then with direct calls to QIC.

Specify RECORDTYPE='FIXED’ whenever possible.
¥hen doing unformatted I/0, 4if it can’t be fixed,
specify 'VARIABLE’. Use the default for unformat-
ted only when doing large "dumps* of data in image
form.

Data "lists” in an I/0 statement should always
consist of exactly one variable, preferably a
charcter variable. 1Implied do lists are as bad as
lists of variables.

MACRO

The Fortran compiler is good, but replacing a
small compute intensive section of code with well
written Macro can often cut execution times by
50%.

Use non-sharable code for maximum speed -- place
local data in the same Psect as the code (make it
writable) within 32000 bytes, or, preferably, 127
bytes of where it will be used. This allows one

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

Notes

Page 7.5

RAXCO VAX/VMS Performance Management Seminar

or two byte operand offsets without tying up pre-
cious registers with base addresses.

When using character instructions, be aware of the
values 1left in registers 0 through 5 after in-
struction completion. They are very often useful.

Avoid CALLG and CALLS calls to subprogram segments
—- use BSBB, BSBW or JSB whenever possible. Avoid
POPR and PUSHR if possible. I.e., use registers
consistantly.

Frequent calls to system services should not use
the macros -- define the argument list explicitly
(and 1locally, if possible) and initialize invar-
iant arguments at compile time.

Explore the VAX instruction set and addressing
modes and use them. There is exceptional power
there w®hich high level languages just can’t take
advantage of.

Copyright RAXCO,Inc. 1986 Duplication in any manner prohibited.

-Notes

Page 7.6

