HP BASIC for OpenVMS
User Manual

Order Number: AA-HY15F-TK

January 2005

This manual describes how to develop HP BASIC programs and use HP
BASIC features on HP OpenVMS Industry Standard 64 and HP OpenVMS
Alpha systems.

Revision/Update Information: = This revised manual supersedes the
Compaq BASIC OpenVMS Alpha and VAX
Systems User Manual, Version 1.4.

Software Version: HP BASIC Version 1.6
for OpenVMS Systems

Operating System and Version: OpenVMS 164 Version 8.2 or higher
OpenVMS Alpha Version 7.1 or higher
(with IEEE floating-point support)
OpenVMS Alpha Version 6.1 or higher
(without IEEE floating-point support)

Hewlett-Packard Company
Palo Alto, California

DocPrep V1.0.2
Processed on 12/20/2004

Black and white submission.

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US

ZK5424
This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Preface ..

Contents

Part| Developing BASIC Programs on OpenVMS Systems

1 Overview of HP BASIC

1.1
1.2

Language Constructs Supported
Advantages on OpenVMS

2 Developing HP BASIC Programs

2.1

2141
21.2
21.3

214
2.2

2.21
222
2.2.3
224
2.2.5
2.2.6
2.3

2.3.1

2.3.1.1
2.3.1.2
2.3.1.3

Compiling an HP BASIC Program
BASIC Command
BASIC Command Qualifiers
Declining Qualifiers and Their Recommended
Replacements
Compiler Listings.

Linking an HP BASIC Program
LINK Command.uiiiiine..
LINK Command Qualifiers
Linker Input Files
Linker Output Files
Using an Object Module Library
Linker Error Messages.,

Running an HP BASIC Program
Improving Run-Time Performance of HP BASIC
Programs

Dataltems.........
Qualifiers e
Statements.

XiX

3 Using the OpenVMS Debugger with BASIC

3.1 Overview of the Debugger 3-1
3.2 Compiling and Linking to Prepare for Debugging 3-1
3.3 Viewing Your Source Code, 3-2
3.3.1 Noscreen Mode i, 3-2
3.3.2 Screen Mode. 3-3
3.4 Controlling and Monitoring Program Execution.............. 34
3.41 Starting and Resuming Program Execution 34
3.4.2 Determining the Current Location of the Program

Counter i 3-6
3.4.3 Suspending Program Execution 3-7
3.4.4 Tracing Program Execution 3-9
3.4.5 Monitoring Changes in Variables 3-10
3.5 Examining and Manipulating Data 3-11
3.5.1 Displaying the Values of Variables 311
3.5.2 Changing the Values of Variables. 3-12
3.5.3 Evaluating Expressions 3-13
3.6 Stepping Into BASIC Routines. 3-13
3.6.1 Controlling Symbol References. 3-15
3.7 Sample Debugging Session. 3-15
3.8 Hints for Using the OpenVMS Debugger 3-17

Partll HP BASIC Programming Concepts

4 BASIC Concepts and Elements

4.1 Line Numbers 4-1
411 Programs with Line Numbers 4-1
412 Programs Without Line Numbers 4-2
41.3 Labels 4-3
41.4 Continuation of Long Program Statements 4-3
4.2 Identifying Program Units 4-4
4.3 BASIC Character Set 4-5
4.4 Program Documentation 4-5
4.5 Declarations and Data Types 4-6
451 Implicit Data Typing 4-7
452 Explicit Data Typing 4-8
4.6 Constants 4-8
4.7 Variables 4-10
4.7.1 Floating-Point Variables. 4-10
4.7.2 Integer Variables 4-10
4.7.3 Packed Decimal Variables 4-11

4.7.4
475
4.7.6
4.8
4.9
4.10

String Variables
Subscripted Variables.
Initialization of Variables . .

Keywords and Reserved Words

Operands, Operators, and Expressions

Assignment Statements

5 Simple Input and Output

5.1
5.1.1
5.1.1.1
51.1.2
51.1.3
5.1.2
5.1.2.1
5.1.2.2
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2

6 Arrays

6.1
6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.3
6.2.4
6.3
6.4
6.5
6.5.1
6.5.2
6.6
6.6.1
6.6.2
6.6.3

Program Input

Providing Input Interactively

INPUT Statement

INPUT LINE and LINPUT Statements
Enabling and Disabling the Question Mark Prompt
Providing Input from the Source Program
READ and DATA Statements......................

RESTORE Statement . .
Program Output............

Print Zones—The Comma and the Semicolon
Output Format for Numbers and Strings................

Terminal-Format Files

Opening and Closing a Terminal-Format File
Writing Records to a Terminal-Format File

Overview of Arrays
Creating Arrays Explicitly

Creating Arrays with the DECLARE Statement
Creating Arrays with the DIM Statement
Declarative DIM Statements
Executable DIM Statements
Creating Arrays with the COMMON Statement
Creating Arrays with the MAP Statement...............

Creating Arrays Implicitly

Determining the Bounds of an Array
Assigning and Displaying Array Values
Assigning Values with the LET Statement
Listing Array Elements with the PRINT Statement

Using MAT Statements
MAT Statement
MAT READ Statement. . . .

MAT INPUT [#] Statement

6-1
6-2
6-3
6—4
6-5
6-5
6-6
6-7
6—7
6-8
6-9
6-9
6-10
6-10
6-12
6-14
6-14

6.6.4 MAT LINPUT [#] Statement 6-16
6.6.5 MAT PRINT [#] Statement 6-17
6.6.6 Matrix I/O Functions NUM and NUM2) 6-18
6.7 Matrix Operators it 6-19
6.7.1 Arithmetic Matrix Operations 6-19
6.7.1.1 Assignment 6-19
6.7.1.2 Addition and Subtraction 6-20
6.7.1.3 Multiplication. 6—20
6.7.2 Matrix Functions 6-21
6.7.2.1 TRN Function 6-21
6.7.2.2 INVFunction 622
6.7.2.3 DET Function 6-23
7 Data Definition
7.1 Declarative Statements 7-1
7.2 Data Types e 7-1
7.3 Setting the Default Data Type and Size.................... 7-2
7.4 Declaring Variables 0. ... 7-3
7.5 Declaring Named Constants 7-3
7.6 Operations with Multiple Data Types 7-3
7.7 Allocating Dynamic and Static Storage 7-4
7.71 COMMON Statement. u.n... 7-5
7.7.2 MAP Statement 7-6
7.7.21 Single Maps e 7-6
7722 Multiple Mapsciii e 7-8
7.7.3 FILL Items. e 7-9
7.7.4 Using COMMON and MAP Statements in Subprograms 7-11
7.7.5 Dynamic Mapping 0. 7-13
8 Creating and Using Data Structures
8.1 RECORD Statement 8-1
8.1.1 Grouping RECORD Components 8-5
8.1.2 RECORD Variants 8-5
8.1.3 Accessing RECORD Components 8-8

vi

9 Program Control

10

9.1 Statement Modifiers.
9.1.1 IF Modifier e
9.1.2 UNLESS Modifier
9.1.3 FOR Modifier i
9.1.4 UNTIL Modifier i i
9.1.5 WHILE Modifier
9.1.6 Nesting Modifiers.
9.2 LoopS . o
9.2.1 FOR.NEXT LoOpS. ... oot e et e
9.2.2 WHILE.. NEXT Loopsiii i,
9.2.3 UNTIL.NEXT LoOpS . . .« v vt oo et e e e i e e e i e e e
9.24 Nesting Loops i
9.3 Unconditional Branching (GOTO Statement)................
9.4 Conditional Branching
9.4.1 ON...GOTO...OTHERWISE Statement
9.4.2 IF.. THEN...ELSE Statement
9.4.3 SELECT...CASE Statement
9.5 EXIT and ITERATE Statements
9.6 Executing Local Subroutines
9.6.1 GOSUB and RETURN Statements
9.6.2 ON...GOSUB...OTHERWISE Statement.
9.7 Suspending and Halting Program Execution
9.7.1 SLEEP Statement
9.7.2 WAIT Statement
9.7.3 STOP Statement
9.74 END Statement
Functions

10.1 Built-In Functions
10.1.1 Numeric Functions.,
10.1.1.1 ABS Function.
10.1.1.2 INT and FIX Functions
10.1.1.3 SIN, COS, and TAN Functions.
10.1.1.4 SQR Function,
10.1.1.5 LOG10 Function 0. ...,
10.1.1.6 EXP Function.
10.1.1.7 RND Function,
10.1.2 Data Conversion Functions
10.1.2.1 ASCII Function
10.1.2.2 CHRS$ Function,

9-1
9-2
9-2
9-2
9-2
9-2
9-3
9-3
9-3
9-6
9-7
9-8
9-8
9-9
9-9
9-10
9-12
9-14
9-16
9-16
9-17
9-18
9-19
9-19
9-20
9-20

10-1
10-2
10-2
10-2
10-3
10-4
104
10-5
10-5
10-6
10-6
10-7

Vii

11

viii

10.1.3 String Numeric Functions

10.1.3.1 FORMATS$ Function
10.1.3.2 NUMS$ and NUM1$ Functions
10.1.3.3 VAL% and VAL Functions
10.1.4 String Arithmetic Functions
10.1.4.1 SUMS$ and DIF$ Functions
10.1.4.2 QUOS$, PLACES$, and PROD$ Functions
10.1.5 Date and Time Functions
10.1.5.1 DATE$ Function
10.1.5.2 DATE4$ Function
10.1.5.3 TIME$ Function.
10.1.5.4 TIME Function
10.1.6 Terminal Control Functions
10.1.6.1 CTRLC and RCTRLC Functions
10.1.6.2 ECHO and NOECHO Functions
10.1.6.3 INKEY$ Function
10.2 User-Defined Functions
10.2.1 Single-Line DEF Functions
10.2.2 Multiline DEF Functions

String Handling

1.1 Overview of Strings
11.2 Using Dynamic Strings
11.8 Using Fixed-Length Strings
11.4 Using String Virtual Arrays.............
11.5 Assigning StringData
11.5.1 LET Statement,
11.5.2 LSET Statement,
11.5.3 RSET Statement
11.5.4 MID$ Assignment Statement
11.6 Manipulating String Data with String Functions
11.6.1 LEN Function
11.6.2 POS Function.
11.6.3 SEGS FUnctiono vt i
11.6.4 MID$ FUNctiono oot
11.6.5 STRINGS Functiono ..
11.6.6 SPACE$ Function
11.6.7 TRMS$ Function
11.6.8 EDITS FUNctiono v v vt e

11.7 Manipulating String Data with Multiple Maps

10-7
10-8
10-8
10-9

10-10

1011

10-11

10-13

10-14

10-14

10-14

10-15

10-15

10-16

10-16

10-17

10-18

10-18

10-20

111
1-2
11-3
11-4
1-5
11-5
11-6
1-7
11-8
11-9
11-9

11-10

11-12

11-14

11-15

11-16

11-16

11-16

11-18

12 Program Segmentation

12.1 HP BASIC Subprograms,
12.1.1 SUB Subprogramsc.uuiiineiinnennn..
12.1.2 FUNCTION Subprogramscouven....
12.2 Declaring Subprograms and Parameters
12.3 Compiling Subprograms
12.4 Invoking Subprograms...................c.00 ...
12.4.1 Invoking SUB Subprograms.
12.4.2 Invoking FUNCTION Subprograms
12.5 Returning Program Status..............................

13 File Input and Output

13.1 Record Formats
13.1.1 Fixed-Length Records
13.1.2 Variable-Length Records
13.1.3 Stream Records
13.2 File Organizations
13.2.1 Terminal-Format Files
13.2.2 Sequential Files
13.2.3 Relative Files
13.2.4 Indexed Files i
13.2.5 Virtual Files o
13.3 Record Access and Record Context........................
1834 I/Oand Record Buffers...........
13.5 Accessing the Contents of a Record
13.5.1 MAP Statement
13.5.2 MAP DYNAMIC and REMAP Statements
13.5.3 MOVE Statement.
13.6 File and Record Operations
13.6.1 Opening Files. i
13.6.2 Creating Virtual Array Files
13.6.3 Locating Records
13.6.4 Reading Records.
13.6.5 Writing Records
13.6.6 Deleting Records i
13.6.7 Updating Records.
13.6.8 Controlling Record Access,
13.6.9 Gaining Access to Locked Records
13.6.10 Accessing Records by Record File Address
13.6.11 Transferring Data to Terminal-Format Files
13.6.12 Resetting the File Position

13-1
131
13-2
13-2
13-2
13-3
13-3
13-3
13-4
13-4
13-5
13-6
13-6
13—7
13—7
13-9
13-11
13-11
13-14
13-14
13-16
13-19
13-21
13-21
13-23
13-25
13-27
13-29
13-29

13.6.13
13.6.14
13.6.15
13.6.16
13.7
13.7.1
13.7.2
13.7.3
13.8
13.8.1
13.8.2
13.8.3
13.8.4
13.8.5
13.8.6
13.8.7
13.8.8
13.8.9
13.8.10
13.8.11
13.8.12

Truncating Files
Renaming Files

Closing Files and Ending /O

Deleting Files . .

File-Related Functions

FSP$ Function .

RECOUNT Function,
STATUS, VMSSTATUS, and RMSSTATUS Functions
OPEN Statement Options
BUCKETSIZE Clausec.uuiiiiiiiiannnnn .

BUFFER Clause

CONNECT Clausecov it
CONTIGUOUS Clauseot oe it e e e e e i
DEFAULTNAME Clause
EXTENDSIZE Clause,
FILESIZE Clause.ot

NOSPAN Clause

RECORDTYPE Clause vv e
TEMPORARY Clauseo it it
USEROPEN Clause,
WINDOWSIZE Clause,

14 Formatting Output with the PRINT USING Statement

Overview of the PRINT USING Statement
Using Format Strings,

141
14.2
14.3
14.3.1
14.3.2
14.3.3
14.3.3.1
14.3.3.2
14.3.3.3
14.3.3.4
14.3.3.5
14.3.3.6
14.3.3.7
14.3.3.8
14.4
14.41
14.4.2
14.4.3
14.4.4

Printing Numbers .

Specifying the Number of Digits
Specifying Decimal Point Location
Printing Numbers with Special Symbols

Commas . . .
Asterisk-Fill

Fields

Currency Symbols
Negative Fields
E (Exponential) Format
Leading Zerost
Blank-If-Zero Fields
Debitsand Credits

Printing Strings . . .

Left-Justified Format
Right-Justified Format

Centered Fields
Extended Fields

13-30
13-30
13-31
13-31
13-31
13-32
13-33
13-33
13-34
13-34
13-36
13-36
13-37
13-37
13-38
13-38
13-39
13-39
13-40
1340
1343

141
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-9

14-10

14-11

14-11

14-12

14-12

14-14

14-14

14-15

14-15

14.5 PRINT USING Statement Error Conditions

15 Handling Run-Time Errors

15.1 Default Error Handling
15.2 User-Supplied Error Handlers
15.2.1 Protected Regions.
15.2.2 Handlers
15.2.3 Exiting from Handlers

15.2.3.1 RETRY Statement
15.2.3.2 CONTINUE Statement
15.2.3.3 EXIT HANDLER Statement

15.2.4 Selecting the Severity of Errors to Handle.
15.2.5 Identifying Errors

15.2.5.1 Determining the Error Number (ERR)...............
15.2.5.2 Determining the Error Line Number (ERL)...........
15.2.5.3 Determining Where the Error Occurred (ERN$)
15.2.5.4 Determining the Error Message Text (ERTS$)..........
15.2.5.5 Determining OpenVMS Error Information............
15.2.5.6 Determining RMS Error Information................

15.2.6 Ctrl/C Trappingcoiiiineon..
15.2.7 Handling Errors in Multiple-Unit Programs
15.2.8 Forcing Errors
15.3 Using the ON ERROR Statements...............

16 Compiler Directives

16.1 Overview of Compiler Directives
16.2 Controlling the Compilation Listing..............
16.2.1 %TITLE and %SBTTL Directives.
16.2.2 %IDENT Directive
16.2.3 %PAGE Directive
16.2.4 %LIST and %NOLIST Directives
16.2.5 %CROSS and %NOCROSS Directives
16.3 Accessing External Source Files.
16.4 Controlling Compilation
16.4.1 %LET Directive,
16.4.2 %VARIANT Directive
16.4.3 %ABORT Directive.
16.4.4 %PRINT Directive
16.4.5 %IF-%THEN-%2ELSE-%END %IF Directive
16.4.6 %DEFINE and %UNDEFINE Directives

16.5 Record Dependency Relationships in CDD/Repository

15-1
15-2
15-3
15-4
15-6
15-8
15-8
15-10
15-11
15-12
15-12
15-13
15-14
15-14
15-15
15-16
15-17
15-18
15-20
15-20

16-1
162
162
164
164
16-5
16-6
16—7
16-8
16-9
16-10
16-10
16-10
16-10
16—-12
16-12

Xi

17 Data Representation

171
17.1.1
17.1.2
17.1.3
171.4
17.2
17.2.1
17.2.2
17.2.3
17.2.4
17.2.5
17.2.6
17.3
17.4
17.41
17.4.2
17.5
17.6

Integer Format.........
Byte-Length Integer Format
Word-Length Integer Format
Longword Integer Format
Quadword Integer Format

Real Number Format
SINGLE Floating-Point Number Format (F_floating)
DOUBLE Floating-Point Number Format (D_floating)
GFLOAT Floating-Point Number Format (G_floating)
SFLOAT Floating-Point Number Format (S_floating)
TFLOAT Floating-Point Number Format (T_floating)
XFLOAT Floating-Point Number Format (X_floating)

Packed Decimal Number Format

String and Array Descriptor Format
Fixed-Length String Descriptor Format
Dynamic String Descriptor Format

Array Descriptors. e

Decimal Scalar String Descriptor (Packed Decimal String

Descriptor)o e

Part lll Using HP BASIC Features on OpenVMS Systems

18 Advanced File Input and Output

Xii

18.1

18.1.1
18.1.2
18.1.3
18.1.4
18.1.5
18.1.6
18.1.7
18.1.8
18.1.9
18.2

18.2.1

RMS I/O to Magnetic Tapeovi i
Allocating and Mountinga Tape
Opening a Tape File for Output
Opening a Tape File for Input
Positioninga Tape
Writing Records toa File
Reading Records froma File
Controlling Tape Output Format
Rewindinga Tape
ClosingaFile.........

Device-Specific I/O
Device-Specific I/O to Unit Record Devices.

171
17-1
17-2
17-2
17-2
17-3
17-3
17-4
17-6
17-6
17-7
17-7
17-8
17-9

17-10

17-10

17-11

17-11

18-1
18-2
18-2
18-3
18-3
18—4
18-5
18-5
18-6
18-6
18—7
18—7

18.2.2 Device-Specific I/O to Magnetic Tape Devices

18.2.2.1 Allocating and Mountinga Tape
18.2.2.2 Opening a Tape File for Output
18.2.2.3 Opening a Tape File for Input
18.2.2.4 Writing Recordstoa File
18.2.2.5 Reading Records froma File
18.2.2.6 Rewindinga Tapeo ...
18.2.2.7 ClosingaTape
18.2.3 Device-Specific /O to Disks
18.2.3.1 Assigning and Mountinga Disk
18.2.3.2 Opening a Disk File for OQutput
18.2.3.3 Opening a Disk File for Input
18.2.3.4 Writing Records toa Disk File
18.2.3.5 Reading Records from a Disk File

18.3 1/O to Mailboxes.
184 Network I/O........
18.4.1 Remote File Access

18.4.2 Task-to-Task Communication
18.4.3 Accessing a VAX Rdb/VMS Database

19 Using BASIC in the Common Language Environment

19.1 Specifying Parameter-Passing Mechanisms
19.1.1 Passing Parameters by Reference
19.1.2 Passing Parameters by Descriptor
19.1.3 Passing Parameters by Value.

19.1.4 HP BASIC Default

Parameter-Passing Mechanisms

19.1.5 Creating Local Copies i,

19.1.6 Passing Arrays. . .

19.2 Calling External Routines
19.2.1 Determining the Typeof Call
19.2.2 Declaring an External Routine and Its Arguments

19.2.3 Calling the Routine

19.3 Calling HP BASIC Subprograms from Other Languages
19.4 Calling System Routines
19.4.1 OpenVMS Run-Time Library Routines
19.4.2 System Service Routines
19.4.3 System Routine Arguments

19.4.4 Including Symbolic
19.4.5 Condition Values .

Definitions.

19.5 Examples of Calling System Routines

19.6 OpenVMS Calling Stan
19.7 Additional Information

dard.........

18-7
18-7
18-8
18-8
18-9
18-9
18-10
18-10
18-10
1811
1811
1811
1811
18-12
18-13
18-15
18-15
18-16
18-18

19-1
19-2
19-2
19-2
19-3
19-4
19-5
19-5
19-6
19-6
19-7
19-8
19-10
19-11
19-11
19-12
19-17
19-19
19-19
19-22
19-23

Xii

20 Libraries and Shareable Images

20.1 Overview of Libraries.ttt 20-1
20.2 System-Supplied Libraries 202
20.3 Creating User-Supplied Object Module Libraries............. 20-3
20.3.1 Accessing User-Supplied Object Module Libraries 20-3
20.4 ShareableImages............. ... 204
20.41 Accessing Shareable Images. 20-5

21 Using CDD/Repository with BASIC

21.1 Overview of CDD/Repository 21-1
21.2 CDD/Repository Conceptsccuiiiiinennno... 21-1
21.2.1 Dictionary Formats 21-2
21.2.2 Dictionary Path Names 21-2
21.2.3 Dictionary Entities. 21-4
21.2.4 Dictionary Relationships 21-4
21.2.5 Extracting CDD/Repository Data Definitions 21-4
21.3 Using CDD/Repository with BASIC 21-7
21.3.1 /DEPENDENCY_DATA Qualifier 21-7
21.3.2 Creating Relationships with Included Record Definitions . . . 21-8
21.4 Creating Relationships for Referenced Dictionary Entities 21-10
21.5 Specifying a CDD History List Entry 21-11
21.6 CDD/RepoSitory Arrays, 21-12
21.7 CDD/Repository Variants, 21-14
21.8 NAME FORBASIC Clauseuuiuuiiiiianeanon. 21-15
21.9 CDD/Repository Data Types. 21-16
21.9.1 Character String Data Types 21-21
21.9.2 Integer Data Typesc.. ... 21-22
21.9.3 Floating-Point Data Types 21-25
2194 Decimal String Data Types 21-27
21.9.5 Other Data Types. 21-29

22 Using DECwindows Motif Bindings with BASIC

22.1 Overview of DECwindows Motif Concepts 22-1
22.2 Using DECwindows Motif Bindings with BASIC 221
22.3 DECwindows Motif Programming Examples Using BASIC 22-3
22.4 Special Considerations for Handling Strings with DECwindows

Motif .. 22-4

Xiv

A Compile-Time Error Messages

AA Compile-Time Errors

B Run-Time Messages

B.1 HP BASIC Run-Time Errors by Mnemonic
B.2 HP BASIC Run-Time Errors by Number
B.3 Errors Not Generated by HP BASIC

C Optional Programming Productivity Tools
CA1 Language Sensitive Editor (LSE) and Source Code Analyzer

(SCA) .
C.1.1 Preparing an SCA Library
Ci1.2 Compiling From Within LSE
C.1.3 HP BASIC Support for LSE and SCA Features

c.z2 CDD/Repositoryot e
C.3 Database Management System (DBMS)....................
C4 Digital Test Manager for OpenVMS
C5 Code Management System for OpenVMS (CMS)

Index
Examples
9-1 Assigning Values to Consecutive Array Elements
9-2 Assigning Consecutive Multiples to Odd-Numbered Elements
Of ATray . .. o
13—1 Creating a USEROPEN Routine
19-1 BASIC Main Program
19-2 FORTRAN Subprogramcuiun....
19-3 Calling System Services
19-4 Program Displaying the $QIOW System Service Routine . . .
211 CDD L. .. e
21-2 Translated RECORD Statement.

C-1
c-=2
c-=2
C-3
Cc+4
c4
c4
c4

9-5
1342
19-10
19-10
19-20
19-21
21-21
21-22

XV

Figures

7-1
171
17-2
17-3
17-4
17-5
17-6
177
17-8
17-9
17-10
17-11
17-12
17-13

Tables

XVi

2—1
3-1
4-1
61
6-2
7-1

101
10-2
111
1-2
131
13-2
13-3
13-4
141
14-2
19-1
19-2

Multiple Mapst e 7-9
Byte-Length Integer Format 171
Word-Length Integer Format 17-2
Longword Integer Format 17-2
Quadword Integer Format 17-3
Single-Precision Real Number Format 17-4
Double-Precision Real Number Format 17-5
GFLOAT Floating-Point Number Format................ 17-6
SFLOAT Floating-Point Number Format 17-7
TFLOAT Floating-Point Number Format................ 177
XFLOAT Floating-Point Number Format................ 17-8
Fixed-Length String Descriptor Format 17-10
Dynamic String Descriptor Format 17-11
Decimal Scalar String Descriptor. 17-11
Natural Boundaries For Supported Data Types 2-19
Resultant Behavior of the STEP/INTO Command 3-15
Predefined Constants 4-9
MAT Statements 6-11
MAT Statement Keywords 6-12
FILL Item Formats, Representations, and Default

Allocations 7-10
String Arithmetic Functions 10-10
Precision of String Arithmetic Functions 10-10
String Modification, 11-2
EDITS Optionsottt e i e e e 11-17
Record Context After a FIND Operation 13-16
Record Context After a GET Operation 13-17
Record Context After a PUT Operation 13-19
RMS Control Structures Set for the USEROPEN Clause. . . . 13-40
Format Characters for Numeric Fields 14-6
Format Characters for String Fields 14-13
Valid Parameter-Passing Mechanisms 19-3
Run-Time Library Facilities 19-11

19-3
19-4
21-1
21-2
B—1
B-2

System Services
OpenVMS USages . ..ottt e
Supported CDD/Repository Data Types
Unsupported CDD/Repository Data Types
BASIC Run-Time Errors
Errors Not Generated by HP BASIC

XVii

Preface

This manual describes how to develop and use HP BASIC programs on
OpenVMS systems and describes BASIC language features.

Note

In this manual, the term OpenVMS refers to both OpenVMS 164 and
OpenVMS Alpha systems. If there are differences in the behavior of
the HP BASIC compiler on the two operating systems, those differences
are noted.

The term 164 BASIC refers to HP BASIC on OpenVMS 164 systems.
Alpha BASIC refers to HP BASIC on OpenVMS Alpha systems.
VAX BASIC refers to VAX BASIC on OpenVMS VAX systems.

Intended Audience

This manual is intended for programmers who compile, link, and execute

HP BASIC programs on OpenVMS systems. Users should have a working
knowledge of BASIC or another high-level programming language, the Digital
Command Language (DCL), and DCL command procedures.

Document Structure

This manual contains the following chapters and appendixes:

Part | Developing HP BASIC Programs on OpenVMS Systems

Chapter 1 provides a brief overview of HP BASIC.

Chapter 2 describes how to develop programs at DCL command level and
how to generate a compiler listing.

Chapter 3 describes how to use the OpenVMS Debugger to debug HP
BASIC programs.

Xix

XX

Part Il HP BASIC Programming Concepts

Chapter 4 explains how to get started with HP BASIC.
Chapter 5 explains simple input and output procedures.
Chapter 6 shows how to use arrays.

Chapter 7 explains data definitions.

Chapter 8 explains how to create user-defined data structures with the
RECORD statement.

Chapter 9 shows how to control the flow of program execution.
Chapter 10 explains how to use functions.

Chapter 11 explains how to handle strings.

Chapter 12 describes structured programming techniques.
Chapter 13 explains how to manage files.

Chapter 14 describes how to format output with the PRINT USING
statement.

Chapter 15 explains error-handling techniques.
Chapter 16 shows how to use compiler directives.

Chapter 17 describes how BASIC represents data.

Part lll Using HP BASIC Features on OpenVMS Systems

Chapter 18 describes additional I/O considerations on OpenVMS systems.

Chapter 19 describes OpenVMS System Services and Run-Time Library
routines.

Chapter 20 describes the use of user-supplied libraries and shareable
images.

Chapter 21 describes how to use CDD/Repository capabilities.
Chapter 22 describes using standard Motif Bindings with BASIC.

Appendixes

Appendix A lists compile-time error messages.
Appendix B lists run-time error messages.

Appendix C provides an overview of the optional productivity tools.

Related Documents

For more information about language elements, syntax, and reference
information, see the HP BASIC for OpenVMS Reference Manual.

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either
of the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZK03-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

Conventions
The following product names may appear in this manual:
e HP OpenVMS Industry Standard 64 for Integrity Servers
e OpenVMS 164
e J64

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

The following typographic conventions might be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention
appears as brackets, rather than a box.

XXi

O

{}

bold type

italic type

UPPERCASE TYPE

XXii

A horizontal ellipsis in examples indicates one of the
following possibilities:

e Additional optional arguments in a statement have
been omitted.

e The preceding item or items can be repeated one or
more times.

e Additional parameters, values, or other information can
be entered.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that
you must enclose choices in parentheses if you specify more
than one.

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

In command format descriptions, vertical bars separate
choices within brackets or braces. Within brackets, the
choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command
line.

In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

Italic type indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code
for the device type).

Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

numbers

angle

array

chnl
chnl-exp
com

cond

cond-exp
const
data-type
decimal-var
decl-item
def

delim

equiv-name

err-num
exp

ext-routine

external-param

file-spec
func

int
int-const
int-exp

int-var

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Mnemonics and Other Terms Used in Syntax Diagrams

Angle in radians or degrees

Array; syntax rules specify whether the bounds or
dimensions can be specified

I/0 channel associated with a file
Numeric expression that specifies a channel number
Specific to a COMMON block

Conditional expression; indicates that an expression can be
either logical or relational

Conditional expression
Constant value

Data type keyword
Decimal variable

Array, record, or variable
Specific to a DEF function
Delimiter

File specification, device, or logical name to be assigned a
logical name

Run-time error number

Expression

External function

External parameter

File specification

Specific to a FUNCTION subprogram
Integer value

Integer constant

Expression that represents an integer value

Variable that contains an integer value

xXiii

XXiv

label

lex
lex-exp
lex-var
line
line-num
lit
log-exp

log-name

macro-id
map
matrix

name

num
num-lit
param-list
pass-mech
prog-name

real

real-exp

real-var

rec-exp

rel-exp
relationship-type

replacement-token

routine
str
str-exp
str-lit
str-var

sub

Alphanumeric statement label

Lexical; used to indicate a component of a compiler directive
Lexical expression

Lexical variable

Statement line; may or may not be numbered

Statement line number

Literal value, in quotation marks

Logical expression

1- to 63-character logical name to be associated with equiv-
name

User identifier following the rules for BASIC identifiers
Specific to a MAP statement
Two-dimensional array

Name or identifier; indicates the declaration of a name or
the name of a BASIC structure, such as a SUB subprogram

Numeric value

Numeric literal

Parameter list, such as for a SUB subprogram
Valid BASIC passing mechanism

Program name

Floating-point value

Real expression

Real variable

Record expression; record number within a file
Relational expression

Oracle CDD/Repository protocol

Identifier, keyword, compiler directive, literal constant, or
operator

SUB subprogram or other callable procedure
Character string

Expression that represents a character string
String literal

Variable that contains a character string

Specific to a SUB subprogram

target Target point of a branch statement; either a line number or

a label
ung-str Unique string
unsubs-var Unsubscripted variable, as opposed to an array element
var Variable

XXV

Partl

Developing BASIC Programs on OpenVMS
Systems

Part I provides an overview of BASIC and describes how to develop and debug
BASIC programs. It shows you how to get started on the OpenVMS system
and how to develop programs.

1

Overview of HP BASIC

BASIC is a powerful structured programming language designed for novice
and application programmers alike.

BASIC was originally developed for students with little or no programming
experience. Since then, BASIC has become one of the most widely used
programming languages and is available on almost every computer system.

The OpenVMS implementations of BASIC have evolved beyond the original
design but still support all of the traditional features of the original language
in addition to more recent programming techniques. HP BASIC has become
much more than a teaching tool and is used in a wide variety of sophisticated
applications.

1.1 Language Constructs Supported
HP BASIC supports the following language constructs:
¢ Code without line numbers (traditional line numbers are optional)
e Control structures, such as SELECT CASE
e Explicit variable declarations

e (Capabilities for handling dynamic strings

e Adaptable file-handling capabilities for terminal-format files, and the full
range of RMS facilities

¢ Global and local run-time error handling with WHEN ERROR blocks
e Compile-time directives

e A variety of data types, including packed-decimal, user-defined records,
and VAX and IEEE floating-point data types.

e Extensive error checking with meaningful error messages

e Thirty-one character names for variables, labels, functions, and
subprograms

Overview of HP BASIC 1-1

1.2 Advantages on OpenVMS

HP BASIC uses the OpenVMS operating system to its full advantage and is
integrated with many other HP products. In particular, HP BASIC supports:

e The OpenVMS systems standard calling procedures

e Record definitions included from the OpenVMS Common Data Dictionary
¢ Code analysis with the Performance and Coverage Analyzer (PCA)

e Creation of code with the Language-Sensitive Editor (LSE)

e Extensive online language help

e Exchange of data with other systems using DECnet

HP BASIC supports features of other versions of BASIC, including PDP-11
BASIC-PLUS-2. The /FLAG qualifier allows you to check whether programs
contain declining features that should be replaced with newer ones.

When you write programs in HP BASIC, you develop programs at the DCL
command level. You write your source program with a text editor, then
compile, link, and run the program with commands to the OpenVMS operating
system.

1-2 Overview of HP BASIC

2

Developing HP BASIC Programs

This chapter describes how to compile, link, and run an HP BASIC program.

For information about using a text editor to create and edit files, see the
OpenVMS User’s Manual.

2.1 Compiling an HP BASIC Program
The HP BASIC compiler performs the following functions:

e Detects errors in your source program

e Generates any appropriate error messages

¢ Generates machine language instructions from the source statements

e Groups these language instructions into an object module for the linker

To invoke the compiler, you use the DCL command BASIC. With the BASIC
command, you can specify command qualifiers. The next sections discuss the
BASIC command in detail as well as the command qualifiers available.

2.1.1 BASIC Command

When you compile your source program, use the BASIC command, which has
the following format:

BASIC [/qualifier...][file-spec [/qualifier...]],...

Iqualifier

Indicates a specific action to be performed by the compiler on all files or specific
files listed. When a qualifier appears directly after the BASIC command, it
affects all files listed.

file-spec

Indicates the name of the input source file that contains the program or module
to be compiled. You are not required to specify a file extension; the HP BASIC
compiler assumes the default file type .BAS.

Developing HP BASIC Programs 2-1

Most of the command qualifiers to the BASIC command affect all files specified
in the command line, no matter where the qualifiers are placed; these are
called global qualifiers. However, the qualifiers /LISTING, /OBJECT,
/DIAGNOSTICS, and /ANALYSIS_DATA are positional qualifiers; that is,
depending on their position in the command line, they can affect all or only
some of the specified files. The rules for positional qualifiers are as follows:

e If the positional qualifier is located directly following the command name,
it affects all the specified files.

e If the file specifications are separated by commas, then any positional
qualifier directly following a file specification affects only that file.

e If the file specifications are separated by plus signs, then any positional
qualifier directly following a list of file specifications affects only the
resulting appended file.

e The rightmost qualifier overrides any conflicting qualifier previously
specified in the command line.

The placement of these positional qualifiers causes BASIC to produce or not
produce listing files, object files, and diagnostics files. For example:

$ BASIC/LIST/0BJ PROG1/NOOBJ/DIAG,PROG2+PROG3/NOLIST

This command does the following:

e Compiles PROG1 and produces a listing file called PROG1.LIS
e Produces no object file for PROG1

e Produces a diagnostics file for PROG1 called PROG1.DIA

e Appends PROG2 and PROGS for compilation, producing a temporary
source file called PROG2

e Compiles the new PROG2 and produces an object file called PROG2.0BJ
¢ Produces no listing file for the new PROG2

HP BASIC does not require line numbers in either of the source files. The "+"
operator is treated as an OpenVMS append operator. HP BASIC appends and
compiles the separate files as if they were a single source file.

2-2 Developing HP BASIC Programs

2.1.2 BASIC Command Qualifiers

The following list shows the BASIC command qualifiers and their defaults. A
description of each qualifier follows the list.

The qualifiers that are “declining features” and no longer recommended are

separately described in Section 2.1.3.

Command Qualifier

/INOJANALYSIS_DATA [= file-specification]

/ARCHITECTURE = arch-type
/INOJAUDIT [= text-entry]

/INO]JCHECK [= (check-clause,...)]
/INO]JCROSS_REF [= [NO]JKEYWORDS]
/INO]DEBUG [= (debug-clause,...)]
/DECIMAL_SIZE = (d,s)
/INOJDEPENDENCY_DATA
/INO]DIAGNOSTICS [= file-specification]
/INOJFLAG [= flag-clause]
/INTEGER_SIZE = data-type
/INOJLINES

/INO]LISTING [= file-specification]
/INOJMACHINE_CODE

/INOJOBJECT [= file-specification]
/INOJOLD_VERSION [= CDD_ARRAYS]
/INOJOPTIMIZE [= LEVEL = n]
/REAL_SIZE = data-type
/INOJROUND_DECIMAL

/SCALE = n
/INO]JSEPARATE_COMPILATION
/INO]SHOW [= (show-item,...)]
/INOJSYNCHRONOUS_EXCEPTIONS
/TYPE_DEFAULT = default-clause
/VARIANT = int-const

/INO]JWARNINGS [= (warn-clause,...)]

Default

/NOANALYSIS_DATA
/ARCHITECTURE = GENERIC
/NOAUDIT

/CHECK = (BOUNDS,OVERFLOW)
/NOCROSS_REF

/DEBUG = (TRACEBACK,SYMBOLS)
/DECIMAL_SIZE = (15,2)
/NODEPENDENCY_DATA
/NODIAGNOSTICS

/FLAG = NODECLINING
/INTEGER_SIZE = LONG

/NOLINES

/NOLISTING (from terminal) /LISTING (batch)
/NOMACHINE_CODE

/OBJECT

/NOOLD_VERSION

/OPTIMIZE = LEVEL = 4
/REAL_SIZE = SFLOAT (I164)or SINGLE (Alpha)
/NOROUND_DECIMAL

/SCALE =0
/NOSEPARATE_COMPILATION
/SHOW
/NOSYNCHRONOUS_EXCEPTIONS
/TYPE_DEFAULT = REAL

/VARIANT =0

/WARNINGS = (INFORMATIONALS,
WARNINGS,

NOALIGNMENT)

/[[NO]JANALYSIS_DATA [= file-specification]

/NOANALYSIS_DATA (default)

The /ANALYSIS_DATA qualifier generates a file containing data analysis
information. This file has the file type .ANA. The Source Code Analyzer (SCA)
library uses these files to display cross-reference information and to analyze

source code.

Developing HP BASIC Programs 2-3

Remarks
e SCA must be installed.

GENERIC

HOST

EV4 (Alpha only)
EV5 (Alpha only)
EV56 (Alpha only)
PCA56 (Alpha only)]
EV6 (Alpha only)
EV67 (Alpha only)
ITANIUM2 (164 only)
MERCED (164 only)

/ARCHITECTURE [=

/ARCHITECTURE = GENERIC (default)
The /ARCHITECTURE qualifier specifies which version of the Itanium or
Alpha architecture to generate instructions for.

All Ttanium and Alpha processors implement a core set of instructions and,
in some cases, the following extensions: BWX (byte- and word-manipulation
instructions) and MAX (multimedia instructions).

OpenVMS Version 7.1 and subsequent releases include an instruction emulator.
This capability allows any Itanium or Alpha chip to execute and produce
correct results from Itanium or Alpha instructions, respectively, even if some of
the instructions are not implemented on the chip. Applications using emulated
instructions will run correctly, but might incur significant emulation overhead
at run time.

Remarks

e /ARCHITECTURE = GENERIC (default) generates instructions that are
appropriate for all Itanium or Alpha processors.

e /ARCHITECTURE = HOST generates instructions for the Itanium or Alpha
processor that the compiler is running on (for example, EV56 instructions
on an EV56 processor, and EV4 instructions on an EV4 processor).

e /ARCHITECTURE = EV4 generates instructions for the EV4 processor
(21064, 21064A, 21066, and 21068 Alpha chips).

Programs compiled with this option will not incur any emulation overhead
on any Alpha processor.

e /ARCHITECTURE = EV5 generates instructions for the EV5 processor
(some 21164 Alpha chips).

2-4 Developing HP BASIC Programs

Programs compiled with this option will not incur any emulation overhead
on any Alpha processor.

/ARCHITECTURE = EV56 generates instructions for the EV56 processor
(some 21164 Alpha chips). This option permits the compiler to generate any
EV4 instruction, plus any instructions contained in the BWX extension.

Programs compiled with this option might incur emulation overhead on
EV4 and EV5 processors.

Note that the EV5 and EV56 processor both have the same chip number:
21164.

/ARCHITECTURE = PCA56 generates instructions for the PCA56 processor
(21164PC Alpha chip). This option permits the compiler to generate any
EV4 instruction, plus any instructions contained in the BWX extension.
Note that currently HP BASIC does not generate any of the instructions in
the MAX extension to the Alpha architecture.

Programs compiled with this option might incur emulation overhead on
EV4 and EV5 processors.

/ARCHITECTURE = EV6 generates instructions for the EV6 processor
(21264 Alpha chip). This option permits the compiler to generate any EV4
instruction, any instructions contained in the BWX and MAX extensions,
plus any instructions added for the EV6 chip. These instructions include a
floating-point square root instruction (SQRT), integer/floating-point register
transfer instructions, and additional instructions to identify extensions and
processor groups.

Programs compiled with this option might incur emulation overhead on
EV4, EV5, EV56, and PCA56 processors.

/ARCHITECTURE = EV67 generates instructions for the EV67 processor
(21264A Alpha chip). This option permits the compiler to generate any
EV6 instruction, plus bit count instructions (CTLZ, CTPOP, and CTTZ).
However, HP BASIC does not generate any of the bit count instructions, so
EV67 is essentially identical to EV6.

Programs compiled with this option might incur emulation overhead on
EV4, EV5, EV56, and PCA56 processors.

/ARCHITECTURE = ITANIUM2 generates instructions for the Itanium
2 processor. This option permits the compiler to generate any Itanium 2
instructions.

/ARCHITECTURE = MERCED generates instructions for the Merced
processor. This option permits the compiler to generate any Merced
instructions.

Developing HP BASIC Programs 2-5

str-lit
/INO]JAUDIT [= { file-specification }]

/NOAUDIT (default)

The /AUDIT qualifier causes the compiler to include a history entry in
CDD/Repository when extracting a CDD/Repository definition. You can specify
either a string literal or a file specification with the /AUDIT qualifier. If you
specify a string literal, BASIC includes it as part of the history entry. If

you specify a file specification, BASIC includes up to the first 64 lines of the
specified file. When you specify /AUDIT, BASIC also includes the following
information about the CDD/Repository record extraction in the history entry:

¢ The name of the program module making the extraction

e The time and date of the extraction

e A note that access was made by way of a BASIC program

¢ A note that the access was an extraction

e The username and UIC of the process accessing CDD/Repository
Remarks

e /NOAUDIT causes the compiler not to include a history entry in
CDD/Repository when extracting a CDD/Repository definition.

[NO]BOUNDS
[NOJOVERFLOW [= ([NOJINTEGER,
/[INOJCHECK [= ([NOIDECIMAL)] ¢ ---)]
ALL
NONE

/CHECK = (BOUNDS,OVERFLOW) (default)
The /CHECK qualifier causes the compiler to test for arithmetic overflow and
for array references outside array boundaries when the program executes.

Remarks

e In Alpha BASIC, specifying /CHECK = NOBOUNDS causes bounds
checking not to be performed on array parameters received by descriptor.

e /CHECK = NOBOUNDS should only be used for thoroughly debugged
programs and when execution time is critical. The program is smaller
and runs faster, but no error is signaled for an array reference outside the
array boundaries. The program might get a memory management or access
violation error at run time.

2-6 Developing HP BASIC Programs

e /CHECK = OVERFLOW enables checking for integers and packed decimal
numbers.

e /CHECK = NOOVERFLOW disables overflow checking.

e /NOCHECK causes the compiler not to test for arithmetic overflow or for
array references outside array boundaries when the program executes.

e /CHECK = ALL is the same as /CHECK = (BOUNDS, OVERFLOW).
e /CHECK = NONE is the same as NOCHECK.

/[NOJCROSS_REFERENCE [= [NOJKEYWORDS]

/INOCROSS_REFERENCE (default)

The /CROSS_REFERENCE qualifier causes the compiler to generate a cross-
reference listing. The cross-reference list shows program symbols, classes, and
the program lines in which they are referenced.

Remarks

e /CROSS_REFERENCE = KEYWORDS specifies that the cross-reference
listing includes all references to BASIC keywords. In Alpha BASIC, if the
/LIST qualifier is not specified as well, /CROSS_REFERENCE is ignored.

e The default for /CROSS_REFERENCE is NOKEYWORDS. See Chapter 16
for more information about cross-reference listings.

e /NOCROSS_REFERENCE specifies that no cross-reference listing be
produced.

[NO]SYMBOLS
[NOJTRACEBACK)]
ALL T
NONE

/INO]DEBUG [= (

/DEBUG = (TRACEBACK,SYMBOLS) (default)

The /DEBUG qualifier causes the compiler to provide information for the
OpenVMS Debugger and the system run-time error traceback mechanism.
Neither TRACEBACK nor SYMBOLS affects a program’s executable code. For
more information about debugging, see Chapter 3.

Developing HP BASIC Programs 2-7

Remarks

e /NODEBUG causes the compiler to suppress information for the OpenVMS
Debugger and the system run-time error traceback mechanism.

e /DEBUG = ALL is the same as /DEBUG = (TRACEBACK,SYMBOLS).
e /DEBUG = NONE is the same as /NODEBUG.

/DECIMAL_SIZE = (d,s)

/DECIMAL_SIZE = (15,2) (default)

The /DECIMAL_SIZE qualifier lets you specify the default size for packed
decimal data. You specify the total number of digits in the number and the
number of digits to the right of the decimal point.

/DECIMAL_SIZE = (15,2) is the default. This default decimal size applies to all
decimal variables for which the total number of digits and digits to the right of
the decimal point are not explicitly declared. See the HP BASIC for OpenVMS
Reference Manual for more information about packed decimal numbers.

/INO]IDEPENDENCY_DATA

/NODEPENDENCY_DATA (default)
The /DEPENDENCY_DATA qualifier generates a compiled module entity in
the CDD$DEFAULT for each compilation unit.

Remarks

e A compiled module entity is generated only if CDD/Plus Version 4.0 or
higher or CDD/Repository Version 5.0 or higher is installed on your system
and if your current CDD$DEFAULT is a CDO-format dictionary.

e You must specify this qualifier if you want INCLUDE %FROM %CDD
and %REPORT %DEPENDENCY directives to establish dependency
relationships.

e /NODEPENDENCY_DATA causes the compiler not to generate a compiled
module entity.

/[NO]DIAGNOSTICS [= file-spec]

/NODIAGNOSTICS (default)

The /DIAGNOSTICS qualifier creates a diagnostics file containing compiler
messages and diagnostic information. The diagnostics file is used by LSE to
display diagnostic error messages and to position the cursor on the line and
column where a source error exists.

2-8 Developing HP BASIC Programs

Remarks
¢ The Language-Sensitive Editor (LSE) must be installed.

e If you do not supply a file specification with the /DIAGNOSTICS qualifier,
the diagnostics file has the same name as its corresponding source file
and the file type .DIA. All other file specification attributes depend
on the placement of the qualifier in the command. See the OpenVMS
documentation set for more information.

e /NODIAGNOSTICS specifies that no diagnostics file is created.

[NO]JDECLINING
/[INOJFLAG [= { ALL } 1
NONE

/FLAG = NODECLINING (default)
The /FLAG qualifier lets you specify whether BASIC warns you about declining
features.

Remarks

e /NOFLAG causes the compiler to issue no warnings about declining
features.

e /FLAG = ALL is the same as /FLAG = DECLINING.
e /FLAG = NONE is the same as /INOFLAG.

BYTE
WORD
LONG
QUAD

/INTEGER_SIZE =

/INTEGER_SIZE = (LONG) (default)
The /INTEGER_SIZE qualifier lets you specify the default size for integer
data.

Remarks

e The default integer size (LONG) applies to all integer variables whose data
type is not explicitly declared. See the HP BASIC for OpenVMS Reference
Manual for more information about integer data types.

Developing HP BASIC Programs 2-9

/INO]JLINES

/NOLINES (default)
The /LINES qualifier makes line number information available for the ERL
function and the BASIC error reporter.

Remarks

e /NOLINES causes line number information to be unavailable for the ERL
function and the HP BASIC error reporter. Specifying /NOLINES makes
your program run faster and reduces program size. However, specifying
/NOLINES causes the following restrictions to be in effect:

— You cannot use the ERL function.

— No BASIC line number is given in run-time error messages.
/[NO]LISTING [= file-spec]
/LISTING (default in batch mode)

INOLISTING (default in interactive mode)
The /LISTING qualifier causes BASIC to produce a source listing file.
Remarks

e /LISTING = file-spec produces a file with an explicit file specification.
Omitting the file-spec produces a listing file with the same name as its
corresponding source file and a file type of .LIS.

e All other file specification attributes depend on the placement of the
qualifier in the command. See the OpenVMS User’s Manual for more
information.

e /LISTING only controls whether or not the compiler produces a listing file
and is the default in batch mode.

e /SHOW controls which parts of the listing are produced.

e /NOLISTING specifies that no source listing file be produced and is the
default at a terminal.

/INOJMACHINE_CODE

/NOMACHINE_CODE (default)
The /MACHINE_CODE qualifier specifies that the listing file includes the
compiler-generated object code.

2-10 Developing HP BASIC Programs

Remarks

e /MACHINE_CODE specifies that the compiler include a listing of the
compiler-generated object code in the listing file. If the /LISTING qualifier
is not specified as well, / MACHINE is ignored.

e /NOMACHINE_CODE specifies that the listing file not include compiler-
generated object code.

/[NO]JOBJECT [= file-spec]

/OBJECT (default)

The /OBJECT qualifier causes the compiler to produce an object module and
optionally specifies its file name. By default, the compiler generates object files
as follows:

e If you specify one source file, BASIC generates one object file.

e If you specify multiple source files separated by plus signs (+), BASIC
appends the files and generates one object file.

e If you specify multiple source files separated by commas (,), BASIC
compiles and generates a separate object file for each source file.

* You can use both plus signs and commas in the same command line to
produce different combinations of appended and separated object files.

Remarks

e /OBJECT = file-spec produces an object file with an explicit file
specification. Omitting file-spec causes the compiler to produce an object
file having the same name as its corresponding source file and the file type
.OBJ. All other file specification attributes depend on the placement of
the qualifier in the command. See the OpenVMS User’s Manual for more
information.

e /NOOBJECT suppresses the creation of an object file. During the early
stages of program development, you might find it helpful to suppress the
production of object files until your source program compiles without errors.

/[NOJOLD_VERSION [= CDD_ARRAYS]

/NOOLD_VERSION (default)

The /OLD_VERSION qualifier causes the compiler to change the lower bound
to zero and adjusts the upper bound of the array. For example,

Array 2:5 in CDD/Repository is translated by the compiler to be an array
with a lower bound of 0 and an upper bound of 3. The compiler issues an
informational message to confirm the array bounds.

Developing HP BASIC Programs 2-11

The /NOOLD_VERSION qualifier causes the compiler to extract an array from
the CDD/Repository with the bounds as specified in the data definition. For
example, Array 2:5 in CDD/Repository is translated by the compiler to be an
array with a lower bound of 2 and an upper bound of 5.

Remarks

e /OLD_VERSION [= CDD_ARRAYS] is provided for compatibility with
previous versions of BASIC.

e CDD/Repository assumes a default lower bound of 1, if none is specified.
Therefore, if no lower bound is specified, the compiler translates the
CDD/Repository array to have a lower bound of 1. For example, Array 5
in CDD/Repository is translated by HP BASIC to be an array with a lower
bound of 1 and an upper bound of 5.

0

1
LEVEL[={ 2
3
4 (default)

GENERIC (default)
HOST

EV4]
EV5
TUNE [= ggi@s]
EV6
EV67
ITANIUM2
MERCED

/INOJOPTIMIZE [=

JOPTIMIZE = LEVEL = 4 (default)

/OPTIMIZE = TUNE = GENERIC (default)

The /OPTIMIZE qualifier causes the compiler to optimize the program to
generate more efficient code for optimum run-time performance. Specifying
/NOOPTIMIZE causes the compiler to perform minimal optimizations.

The following list describes the /OPTIMIZE = LEVEL options:
¢ 0 has the same effect as NOOPTIMIZE. Most optimizations are turned off.

¢ 1 has some optimizations (such as instruction scheduling).

2-12 Developing HP BASIC Programs

2 adds more optimizations (such as loop unrolling and split lifetime
analysis) to those in level 1.

3 adds more optimizations.

4 is the default level.

/OPTIMIZE = LEVEL = 4 is equivalent to /OPTIMIZE or not specifying the
qualifier. Level 4 is the maximum optimization level.

The /OPTIMIZE = TUNE qualifier selects processor-specific instruction tuning
for a specific implementation of the Itanium or Alpha architecture. Tuning for
a specific implementation can provide improvements in run-time performance.

Regardless of the setting of the /OPTIMIZE = TUNE qualifier, the generated
code will run correctly on all implementations of the Itanium or Alpha
architecture as appropriate. Note that code tuned for a specific target might
run more slowly on another target than generically-tuned code.

The following list describes the /OPTIMIZE = TUNE options:

GENERIC (default) selects instruction tuning that is appropriate for all
implementations of the Itanium or Alpha architecture.

HOST selects instruction tuning that is appropriate for the Itanium or
Alpha machine on which the code is being compiled.

EV4 selects instruction tuning for the 21064, 21064A, 21066, and 21068
implementation of the Alpha architecture.

EV5 selects instruction tuning for the 21164 implementation of the Alpha
architecture.

EV56 selects instruction tuning for the 21164 implementation of the Alpha
architecture.

PCA56 selects instruction tuning for the 21164PC implementation of the
Alpha architecture.

EV6 selects instruction tuning for the 21264 implementation of the Alpha
architecture.

EV67 selects instruction tuning for the 21264A implementation of the
Alpha architecture.

ITANIUM2 selects instruction tuning for the Itanium 2 implementation of
the Itanium architecture.

MERCED selects instruction tuning for the Merced implementation of the
Itanium architecture.

Developing HP BASIC Programs 2-13

Remarks

e Specify /NOOPTIMIZE if you specify /DEBUG when compiling a program.
/NOOPTIMIZE expedites and simplifies the debugging session by putting
the machine code in the same order as the lines in the source program.
Optimizations can cause unexpected and confusing behavior in a debugging
session.

e Specifying /OPTIMIZE, the default, usually makes programs run faster.
However, using /OPTIMIZE produces extra instructions to perform the
optimization, which might result in larger object modules and longer
compile times than the /NOOPTIMIZE qualifier.

e To speed compilations during program development, compile with
/NOOBJECT qualifier to check syntax, with /INOOPTIMIZE to check
for correct execution, and finally with /OPTIMIZE for the final check.

SINGLE
DOUBLE
GFLOAT
SFLOAT
TFLOAT
XFLOAT

/REAL_SIZE =

/REAL_SIZE = SFLOAT (164 default); SINGLE (Alpha default)
The /REAL_SIZE qualifier specifies the default size for floating-point data.

Remarks

e The default floating-point size applies to all floating-point variables whose
size is not explicitly declared.

See the HP BASIC for OpenVMS Reference Manual for more information about
floating-point data types.
/[INO]JROUND_DECIMAL

/NOROUND_DECIMAL (default)
The /ROUND_DECIMAL qualifier causes the compiler to round packed decimal
numbers rather than truncate them.

The /NOROUND_DECIMAL qualifier causes the compiler to truncate packed
decimal numbers rather than round them.

The /ROUND_DECIMAL qualifier causes the INTEGER function to round
rather than truncate the decimal part.

ISCALE = n

2-14 Developing HP BASIC Programs

ISCALE = 0 (default)

The /SCALE qualifier specifies a scale factor from zero to six, inclusive. The
scale factor affects only double-precision numbers. The SCALE qualifier helps
to control accumulated round-off errors by multiplying floating-point values by
10 raised to the scale factor before storing them in variables. It is ignored for
all but VAX double-precision (DOUBLE) floating-point numbers.

Remarks

The /SCALE qualifier is provided for compatibility with existing programs
and with other implementations of BASIC. It is recommended that you do not
use this feature for new program development. Accumulated round-off errors
can be better controlled with packed decimal numbers. See the HP BASIC
for OpenVMS Reference Manual for more information about packed decimal
numbers.

/[NOJSEPARATE_COMPILATION

INOSEPARATE_COMPILATION (default)

The /SEPARATE_COMPILATION qualifier causes the compiler to place indi-
vidual compilation units in separate modules in the object file. /NOSEPARATE_
COMPILATION, the default, groups individual compilation units in a source
file as a single module in the object file.

When creating modules for use in an object library, consider using /SEPARATE _
COMPILATION to minimize the size of the routines included by the linker as
it creates the executable image. /SEPARATE_COMPILATION also reduces

the compiler virtual memory requirements when a source contains several
compilation units.

Remarks

e /SEPARATE_COMPILATION causes the compiler to place each routine in
a separate module within the output object.

e /NOSEPARATE_COMPILATION, in most cases, allows more interprocedu-
ral optimizations.

[NOJCDD_DEFINITIONS
[NOJENVIRONMENT
[NOJINCLUDE
/INOJSHOW [= ({ [NOJMAP yeen)]
[NOJOVERRIDE
ALL

NONE

Developing HP BASIC Programs 2-15

/SHOW = (CDD_DEFINITIONS, ENVIRONMENT, INCLUDE, MAP, NOOVERRIDE)
(default)

The /SHOW qualifier determines which parts of the compilation listing are
created.

Remarks

e The size value for dynamically mapped arrays is the size of the actual
array.

e /LISTING must be specified for /SHOW to be effective.

e CDD_DEFINITIONS controls whether the translation of a CDD/Repository
record is displayed in the listing.

e ENVIRONMENT lets you display all defaults that were in effect when the
program was compiled. This is the compilation listing equivalent of the
SHOW command in the environment.

e INCLUDE controls whether files accessed with the %2INCLUDE directive
are displayed in the listing.

e MAP determines whether the listing contains an allocation map. The
allocation map lists all program variables, their size, and their data type.

e OVERRIDE helps you debug code by disabling the effect of the %NOLIST
directive.

e /NOSHOW causes the compiler to display only the source listing.

e /SHOW = ALL is the same as /SHOW = (CDD_DEFINITIONS,
ENVIRONMENT, INCLUDE,MAP, OVERRIDE).

e /SHOW = NONE is the same as NOSHOW.
/[INO]JSYNCHRONOUS_EXCEPTIONS

/INOSYNCHRONOUS_EXCEPTIONS (default)

The default / NOSYNCHRONOUS_EXCEPTIONS qualifier allows the compiler
to reorder the execution of certain arithmetic instructions to improve
performance on the hardware. If a program generates an arithmetic exception,
such as an overflow or divide by zero, certain statements surrounding the
offending statement may or may not be executed as a result of this reordering.
Consider this example:

A=B
C=D/E
G=F

2-16 Developing HP BASIC Programs

If the value of E is zero, the second statement will generate a divide by zero
error. As a result of instruction reordering, it is possible that the assignment
A = B will not take place. Further, it is possible that the assignment G = F will
take place even though the previous statement generated an error.

The /SYNCHRONOUS_EXCEPTIONS qualifier disables reordering. Use this
qualifier for programs that rely on arithmetic exceptions to occur at precise
times during program execution.

The /SYNCHRONOUS_EXCEPTIONS qualifier impacts only arithmetic
exceptions and variable assignments in the immediate area of the excepting
statement.

Very few programs should require the /SYNCHRONOUS_EXCEPTIONS
qualifier to produce correct results.

INTEGER
REAL

DECIMAL
EXPLICIT

[TYPE_DEFAULT =

/[TYPE_DEFAULT = REAL (default)
The /TYPE_DEFAULT qualifier lets you specify the default data type for
numeric variables.

Remarks

e EXPLICIT specifies that all program variables must be explicitly declared
in DECLARE, EXTERNAL, COMMON, MAP, or DIM statements.

e INTEGER, REAL, or DECIMAL specify that only variables and data which
are not explicitly declared default to integer, real, or packed decimal.

e INTEGER_SIZE, REAL_SIZE, and DECIMAL_SIZE cause the compiler to
specify the actual size of variables and data.

/VARIANT = int-const

The /VARIANT qualifier lets you specify the value associated with the lexical
function %VARIANT. See Chapter 16 for more information about VARIANT
and the %VARIANT lexical function.

Developing HP BASIC Programs 2-17

Remarks

If /VARIANT is not specified, the default value is 0.
If /VARIANT is specified without a value, the default is 1.

[NOJWARNINGS
[NOJINFORMATIONALS

/INOJWARNINGS [= ({ [NOJALIGNMENT yeen)]

ALL
NONE

/WARNINGS = (INFORMATIONAL,WARNINGS)

/WARNINGS = (INFORMATIONAL,WARNINGS,NOALIGNMENT) (default)
The /WARNINGS qualifier lets you specify whether BASIC displays
informational and warning messages.

Remarks

/WARNINGS = NOWARNINGS causes the compiler to display informa-
tional messages but not warning messages.

/WARNINGS = NOINFORMATIONALS causes the compiler to display
warning messages but not informational messages.

/NOWARNINGS causes the compiler to suppress any informational or
warning messages.

/WARNINGS = ALIGNMENT causes the compiler to flag all occurrences
of non-naturally aligned RECORD fields, variables within COMMONSs and
MAPs, and RECORD arrays.

An aligned data item starts on an address that is natural for that
data type. Unaligned data accesses on Alpha can significantly reduce
performance. Table 2-1 lists the natural boundaries for the supported data

types.

2-18 Developing HP BASIC Programs

Table 2-1 Natural Boundaries For Supported Data Types

Data Type Natural Boundary
BYTE BYTE

DECIMAL BYTE

DOUBLE QUADWORD
DYNAMIC STRING BYTE

GFLOAT QUADWORD
LONG LONGWORD
QUAD QUADWORD
RECORD Depends on contents
RFA BYTE

SFLOAT LONGWORD
SINGLE LONGWORD
STATIC STRING BYTE

TFLOAT QUADWORD
WORD WORD

XFLOAT OCTAWORD

/WARNINGS = NOALIGNMENT, the default, causes the compiler not to
issue any warning messages about unaligned data.

The compiler naturally aligns all local variables and arrays, but it is the
responsibility of the BASIC programmer to naturally align COMMONS,
MAPS, and RECORDs. The /WARNINGS = ALIGNMENT qualifier flags
all occurrences of non-naturally aligned items. This helps the programmer
identify and correct unaligned entities.

An entity can be unaligned in the following ways:

¢ The entity does not start on a natural boundary for its data type. There
are several actions a programmer can take to resolve this:

— Rearrange the RECORD, MAP, or COMMON so that all entities
start on natural boundaries.

— Force proper alignment with fill items, as needed.

Note that the natural alignment for a RECORD is equal to the largest
alignment required by any of its fields. As an example, if a RECORD
has a byte, long, and double field, the alignment of the RECORD would
be quadword.

Developing HP BASIC Programs 2-19

e For arrays of RECORDs and GROUPs, items can be unaligned if
the size of a RECORD or GROUP is not a multiple of the alignment
requirements of that RECORD or GROUP. For example, if a RECORD
has a natural alignment of quadword, the size of the RECORD must be
a multiple of eight. Otherwise, all array elements after the first might
start on an unaligned boundary. Avoid unaligned accesses by padding
the end of the RECORD with fill items.

e /WARNINGS = ALL is the same as /WARNINGS = (INFORMATIONAL,
WARNINGS, ALIGNMENT).

e /WARNINGS = NONE is the same as /NOWARNINGS.

2.1.3 Declining Qualifiers and Their Recommended Replacements

The following qualifiers are declining features:

/BYTE
/DOUBLE
/GFLOAT
/LONG
/SINGLE
/TIE
/WORD

It is recommended that you replace them with newer qualifiers, as follows:

Old Qualifier Recommended Replacement
/BYTE /INTEGER_SIZE = BYTE
/DOUBLE /REAL_SIZE = DOUBLE
/GFLOAT /REAL_SIZE = GFLOAT

/LONG /INTEGER_SIZE = LONG
/SINGLE /REAL_SIZE = SINGLE

/TIE Move to using entirely native code
/WORD /INTEGER_SIZE = WORD

See the description of the /[NOJFLAG = [NO]DECLINING qualifier in this
chapter. Also see the descriptions of the /INTEGER_SIZE and /REAL_SIZE
qualifiers in this chapter. The old qualifiers are described in the HP BASIC for
OpenVMS Reference Manual.

2-20 Developing HP BASIC Programs

2.1.4 Compiler Listings

A compiler listing provides information that can help you debug your HP
BASIC program. To generate a listing file, specify the /LISTING qualifier when
you compile your HP BASIC program interactively. For example:

$ BASIC/LISTING prog-name

If the program is compiled as a batch job, the listing file is created by default;
specify the /INOLISTING qualifier to suppress creation of the listing file. By
default, the name of the listing file is the name of the source program followed
by the file type .LIS. You can include a file specification with the /LISTING
qualifier to override this default.

A compiler listing generated by the /LISTING qualifier has the following major
sections:

e Source Program Listing

The source program section contains the source code and line numbers
generated by the compiler.

e Cross Reference

The cross reference section is present if the /CROSS_REFERENCE
qualifier was specified. It contains cross references of variables, symbols,
and so forth.

e Allocation Map

The allocation map section contains summary information about program
sections, variables, and arrays.

e Qualifier Summary

The qualifier summary section lists the qualifiers used with the BASIC
command and the compilation statistics.

e Machine Code

The machine code section is present if the /MACHINE_CODE qualifier was
specified. It contains a symbolic representation of the machine instructions
generated for the program section.

Developing HP BASIC Programs 2-21

2.2 Linking an HP BASIC Program

On OpenVMS systems, the OpenVMS Linker (linker) simplifies the job of each
language compiler because the logic needed to resolve symbolic references need
not be duplicated. The main advantage to a system that has a linker, however,
is that individual program modules can be separately written and compiled,
and then linked together. This includes object modules produced by different
language compilers.

The linker performs the following functions:

¢ Resolves local and global symbolic references in the object code
e Assigns values to the global symbolic references

e Signals an error message for any unresolved symbolic reference
e Produces an executable image

When you link a program in development, in order to enable debugging,

use the /DEBUG qualifier with the LINK command. The /DEBUG qualifier
appends to the image all the symbol and line number information appended to
the object modules plus information about global symbols, and forces the image
to run under debugger control when you execute it (unless you then specify
/NODEBUG).

The LINK command produces an executable image by default; however, you
can also use the LINK command to obtain shareable images and system
images. The /SHAREABLE qualifier directs the linker to produce a shareable
image; the /SYSTEM qualifier directs the linker to produce a system image.
See Section 2.2.2 for a complete description of these and other LINK command
qualifiers.

For a complete discussion of the OpenVMS Linker, see the HP OpenVMS
Linker Utility Manual.

2.2.1 LINK Command

Once you have compiled your source program or module, you link it by using
the DCL command LINK. The LINK command combines your object modules
into one executable image, which can then be executed by the OpenVMS
system. A source program or module cannot run on the OpenVMS system until
it is linked. The format of the LINK command is as follows:

LINK[/command-qualifier]... {file-spec [/file-qualifier...]},...

2-22 Developing HP BASIC Programs

/command-qualifier
Specifies one or more output file options.

file-spec
Specifies the input file or files to be linked.

[file-qualifier
Specifies one or more input file options.

If you specify more than one input file, you must separate the input file
specifications with plus signs (+) or commas (,). By default, the linker creates
an output file with the name of the first input file specified and the file type
.EXE. When you link more than one file, list the file containing the main
program first. This way, the name of your output file will have the same name
as that of your main program module.

The following command line links the object files DANCE.OBJ, CHACHA.OBJ,
and SWING.OBJ to produce one executable image called DANCE.EXE:

$ LINK DANCE.OBJ, CHACHA.OBJ, SWING.OBJ

2.2.2 LINK Command Qualifiers

The LINK command qualifiers can be used to modify linker output, as well as
to invoke the debugging and traceback facilities. Linker output consists of an
image file and an optional map file. Image file qualifiers, map file qualifiers,
and debugging and traceback qualifiers are described in this section.

This section summarizes some of the most commonly used LINK command
qualifiers. For a complete list and description of LINK qualifiers, see the HP
OpenVMS Linker Utility Manual.

/BRIEF

The /BRIEF qualifier causes the linker to produce a summary of the image’s
characteristics and a list of contributing modules. This qualifier is used with
/MAP.

/[INOJCROSS_REFERENCE

/INOCROSS_REFERENCE (default)

The /CROSS_REFERENCE qualifier causes the linker to produce cross-
reference information for global symbols; the /NOCROSS_REFERENCE
qualifier causes the linker to suppress cross-reference information.

Developing HP BASIC Programs 2-23

/INO]DEBUG

/NODEBUG (default)

The /DEBUG qualifier causes the linker to include the OpenVMS Debugger
information in the executable image and generates a symbol table; the
/NODEBUG qualifier causes the linker to prevent debugger control of the
program. The default is /NODEBUG.

/INOJEXECUTABLE [= file-spec]

/EXECUTABLE (default)

The /EXECUTABLE qualifier causes the linker to produce an executable image;
the /NOEXECUTABLE qualifier suppresses production of an image file. If a
file-spec is given, the resulting image is given the name of the file-spec.

/FULL

The /FULL qualifier causes the linker to produce a summary of the image’s
characteristics, a list of contributing modules, listings of global symbols by
name and by value, and a summary of characteristics of image sections in the
linked image. This qualifier is used with /MAP.

/INO]JMAP [= file-spec]
/NOMAP (default interactive mode)

/MAP (default batch mode)

The /MAP qualifier causes the linker to generate a map file; the /NOMAP
qualifier suppresses the map. If a file-spec is given, the map file is given the
name of the file-spec.

/[INOJSHAREABLE

/NOSHAREABLE (default)
The /SHAREABLE qualifier causes the linker to create a shareable image; the
/NOSHAREABLE qualifier generates an executable image.

/[INO]JTRACEBACK

/TRACEBACK (default)

The /TRACEBACK qualifier causes the linker to generate symbolic traceback
information when error messages are produced; the /NOTRACEBACK qualifier
suppresses traceback information.

2-24 Developing HP BASIC Programs

2.2.3 Linker Input Files

You can specify the object modules to be included in an executable image in
any of the following ways:
e Specify input file specifications for the object modules.
If no file type is specified, the linker assumes that an input file is an object
file with the file type .OBJ.
e Specify one or more object module library files.

You can either specify the name of an object module library with the
/LIBRARY qualifier, or specify the names of object modules contained in
an object module library with the /INCLUDE qualifier. The uses of object
module libraries are described in Section 2.2.5.

e Specify an options file.

An options file can contain additional file specifications for the LINK
command as well as special linker options. You must use the /OPTIONS
qualifier to specify an options file. For more information about options files,
see the HP OpenVMS Linker Utility Manual.

The linker uses the following default file types for input files:

File File Type
Object module .OBJ
Object library .OLB
Options file .OPT

2.2.4 Linker Output Files

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
resulting image file has the same file name as the first object module specified,
and the file type .EXE.

In a batch job, the linker creates both an executable image file and a storage
map file by default. The default file type for map files is .MAP.

To specify an alternative name for a map file or image file, or to specify an
alternative output directory or device, you can include a file specification on
the /MAP or /EXECUTABLE qualifier. For example:

$ LINK UPDATE/MAP=TEST

Developing HP BASIC Programs 2-25

2.2.5 Using an Object Module Library

In a large development effort, the object modules for subprograms are often
stored in an object module library. By using an object module library, you

can make program modules contained in the library available to other
programmers. To link modules contained in an object module library, use

the /INCLUDE qualifier and specify the specific modules you want to link. For
example:

$ LINK GARDEN, VEGGIES/INCLUDE = (EGGPLANT, TOMATO,BROCCOLI,ONION)

This example directs the linker to link the object modules EGGPLANT,
TOMATO, BROCCOLI, and ONION with the main object module GARDEN.

Besides program modules, an object module library can also contain a symbol
table with the names of each global symbol in the library, and the name of the
module in which they are defined. You specify the name of the object module
library containing symbol definitions with the /LIBRARY qualifier. When you
use the /LIBRARY qualifier during a link operation, the linker searches the
specified library for all unresolved references found in the included modules
during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library, such as LNK$LIBRARY, to be your
default library by using the DCL command DEFINE. The linker searches
default user libraries for unresolved references after it searches modules
and libraries specified in the LINK command. See the HP OpenVMS DCL
Dictionary for more information about the DEFINE command.

For more information about object module libraries, see the HP OpenVMS
Linker Utility Manual.
2.2.6 Linker Error Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or fatal
error conditions occur (errors with severities of E or F), the linker does not
produce an image file.

2-26 Developing HP BASIC Programs

The messages produced by the linker are descriptive, and you do not usually
need additional information to determine the specific error. Some common
errors that occur during linking are as follows:

An object module has compilation errors.

This error occurs when you attempt to link a module that has warnings
or errors during compilation. You can usually link compiled modules for
which the compiler generated messages, but you should verify that the
modules will actually produce the output you expect.

The input file has a file type other than .OBJ and no file type was specified
on the command line.

If you do not specify a file type, the linker assumes the file has a file type
of .OBJ by default. If the file is not an object file and you do not identify it
with the appropriate file type, the linker signals an error message and does
not produce an image file.

You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on the
command line or if the compilation contains fatal diagnostics.

A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names
from the command line and the linker cannot locate the definition

for a specified global symbol reference. For example, a main program
module OCEAN.OBJ calls the subprograms located in object modules
REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ. However, the following
LINK command does not reference the object module SEAWEED.OBJ:

$ LINK OCEAN, REEF, SHELLS
This example produces the following error messages:

$LINK-W-NUDFSYMS, 1 undefined symbol

$LINK-I-UDFSYMS, SEAWEED

$LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
$LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the error by
reentering the command string and specifying the correct modules or libraries.

See the OpenVMS System Messages and Recovery Procedures Reference Manual
for a complete list of linker messages.

Developing HP BASIC Programs 2-27

2.3 Running an HP BASIC Program

After you link your program, use the DCL command RUN to execute it. The
RUN command has the following format:

RUN [/[INO]DEBUGQ] file-spec [/[NO]JDEBUG]

/[NO]DEBUG

The /INOIDEBUG qualifier is optional. Specify the /DEBUG qualifier to
request the debugger if the image is not linked with it. You cannot use
/DEBUG on images linked with the /NOTRACEBACK qualifier. If the image
is linked with the /DEBUG qualifier, and you do not want the debugger to
prompt, use the /NODEBUG qualifier. The default action depends on whether
the file is linked with the /DEBUG qualifier.

file-spec
The name of the file you want to execute.

The following example executes the image SAMPLE.EXE without invoking the
debugger:

$ RUN SAMPLE/NODEBUG
See Chapter 3 for more information about debugging programs.

During program execution, an image can generate a fatal error called an
exception condition. When an exception condition occurs, HP BASIC
displays an error message. Run-time errors can also be issued by other
facilities, such as the OpenVMS operating system. For more information about
run-time errors, see Appendix B.

2.3.1 Improving Run-Time Performance of HP BASIC Programs

Even with fast hardware and an optimizing compiler, you can still tune your
code for run-time performance. This section provides recommendations to
consider if further performance improvements are desirable.

To achieve the best performance for your application, it is important to let
both the hardware and the optimizer/code generator take advantage of their
full capabilities. This can be accomplished by minimizing, and in some cases
avoiding, the use of language features and qualifiers that block optimal
program execution.

2-28 Developing HP BASIC Programs

2.3.1.1 Data Iltems
Choose data types and align data items with the following in mind:

Align data items in MAP, COMMON, and RECORD statements. This is
the recommended first step to improve performance. For more information
on alignment, see Section 2.1.2 under /WARNING = ALIGNMENT.

Use LONG or QUAD data items instead of BYTE and WORD; accessing
LONG or QUAD items is faster than BYTE and WORD, which may require
multiple hardware instructions.

On Alpha, use GFLOAT or TFLOAT data items instead of DOUBLE;
operations are faster on GFLOAT and TFLOAT items. Operations on
DOUBLE operands are performed by converting to GFLOAT, performing
the operation in GFLOAT, and converting back to DOUBLE.

On Itanium, use IEEE data items instead of VAX floating-point data items.
VAX data type operands are converted to appropriate IEEE types before
being operated on.

Choose packed decimal lengths that are the most efficient while still
meeting the needs of the application. The most efficient sizes are the
default size of 15 digits (which fits exactly in a quadword) and 7 digits
(which fits exactly in a longword). If you use one of these preferred sizes, it
should be aligned on a quadword or longword boundary.

Use packed decimal only when it is the appropriate data type. For
example, do not use packed decimal to specify array subscripts, which
are integers.

Minimize mixed data type expressions, especially when you use packed
decimal.

2.3.1.2 Qualifiers

On your BASIC command line, consider the following when you specify
qualifiers:

Use overflow and bounds checking only if they are needed. (See

Section 2.1.2; bounds checking is needed if your program is not thoroughly
debugged.) Both of these /CHECK options are on by default and will hinder
performance.

The use of the /LINES qualifier can impede optimization. /LINES is
needed in Alpha BASIC only for the ERL function and to print BASIC line

numbers in run-time error messages. /INOLINES is the default in Alpha
BASIC.

Developing HP BASIC Programs 2-29

The default optimization level, /OPTIMIZATION = LEVEL = 4, provides
the highest level of optimization.

The /SYNCHRONOUS_EXCEPTIONS qualifier inhibits many optimiza-
tions. For more information on /SYNCHRONOUS_EXCEPTIONS, see
Section 2.1.2.

2.3.1.3 Statements
The statements used in a program can affect performance, as follows:

If you use error handling, the default ON ERROR GO BACK has the least
impact on performance. ON ERROR GOTO {target} and WHEN blocks
have a greater impact. If the application spends a large percentage of time
in one routine, consider writing the routine with default error handling, if
possible.

RESUME without a target impedes optimization. (This applies only to
RESUME statements that do not specify a target.)

A MOVE TO or FIELD statement limits optimizations in the entire routine
(SUB, FUNCTION, or main) where the statement is found. There is no
additional cost for any statement after the first.

OPTION INACTIVE = SETUP can dramatically minimize routine startup
times by omitting RTL calls that initialize and close down routines. For
small BASIC routines, the overhead of these RTL calls can be significant.
Use this option for routines that are frequently called.

If your routine contains any of the following elements, the compiler
provides an informational diagnostic and emits calls to the RTL
initialization and close-down routines:

CHANGE statements

DEF statements

Dynamic string variables
Executable DIM statements
EXTERNAL string functions
MAT statements

MOVE statements for an entire array
ON ERROR statements
READ statements

REMAP statements
RESUME statements
WHEN blocks

String concatenation
Built-in string functions
Virtual arrays

2-30 Developing HP BASIC Programs

Routines using OPTION INACTIVE = SETUP cannot perform I/O and
have no error-handling capabilities. If an error occurs in such a routine,
the error is resignaled to the calling routine.

Using OPTION INACTIVE = SETUP instructs the compiler not to emit
code to initialize local variables. This also improves run-time performance,
but impacts routines that rely upon the automatic initialization of local
variables.

CONTINUE without a target and RETRY can limit optimizations within
the scope of the WHEN blocks associated with the handler that contains
these statements. This impact can be significant if the handler is
associated with a large WHEN block. The code within the associated
WHEN blocks will be minimally optimized.

Developing HP BASIC Programs 2-31

3

Using the OpenVMS Debugger with BASIC

This chapter discusses OpenVMS Debugger information that is specific to the
BASIC language. For more information about the OpenVMS Debugger, see the
HP OpenVMS Debugger Manual. Online help is available during debugging
sessions.

3.1 Overview of the Debugger

A debugger is a tool to help you locate run-time errors quickly. It is used with
a program that has already been compiled and linked successfully, with no
errors reported, but that does not run correctly. For example, the output might
be obviously wrong, the program goes into an infinite loop, or the program
terminates prematurely. The debugger enables you to observe and manipulate
the program’s execution interactively, step by step, until you locate the point at
which the program stopped working correctly.

The OpenVMS Debugger is a symbolic debugger, which means that you can
refer to program locations by the symbols (names) you used for those locations
in your program—the names of variables, routines, labels, and so on. You do
not have to use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of BASIC.

3.2 Compiling and Linking to Prepare for Debugging

The following example shows how to compile and link a BASIC program
(consisting of a single compilation unit named INVENTORY) so that
subsequently you will be able to use the debugger:

$ BASIC/DEBUG INVENTORY
$ LINK/DEBUG INVENTORY

Using the OpenVMS Debugger with BASIC 3-1

The /DEBUG qualifier with the BASIC command instructs the compiler to
write the debug symbol records associated with INVENTORY into the object
module, INVENTORY.OBJ. These records allow you to use the names of
variables and other symbols declared in INVENTORY in debugger commands.
(If your program has several compilation units, you must compile each unit
that you want to debug with the /DEBUG qualifier.)

The /DEBUG qualifier with the LINK command instructs the linker to include
all symbol information that is contained in INVENTORY.OBJ in the executable
image. The qualifier also causes the OpenVMS image activator to start the
debugger at run time. (If your program has several object modules, you might
need to specify other modules in the LINK command.)

3.3 Viewing Your Source Code

The debugger provides two methods for viewing source code: noscreen mode
and screen mode. By default when you invoke the debugger, you are in
noscreen mode, but you might find that it is easier to view your source code
with screen mode. Both modes are described in the following sections.

3.3.1 Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input and
output. To get into noscreen mode from screen mode, enter SET MODE
NOSCREEN. See the sample debugging session in Section 3.7 for a
demonstration of noscreen mode.

In noscreen mode, you can use the TYPE command to display one or more
source lines. For example, the following command displays line 3 of the module
that is currently executing:

DBG> TYPE 3
3: EXTERNAL SUB TRIPLE &
DBG>

The display of source lines is independent of program execution. You can use
the TYPE command to display source code from a module other than the one
currently executing. In that case, you need to use a directory specification to
specify the module. For example, the following command displays lines 16 to
21 of module TEST:

DBG> TYPE TEST\16:21

3-2 Using the OpenVMS Debugger with BASIC

3.3.2 Screen Mode

To invoke screen mode, press PF3. In screen mode, by default the debugger
splits the screen into three displays called SRC, OUT, and PROMPT.

--SRC: module SAMPLESMAIN -SCroll-sourCe---————=———eommmmmmmmmoeoee

1: 10 ! SAMPLE
2:
3: EXTERNAL SUB TRIPLE &
4: (PRINT SUB
5:
6: WHEN ERROR USE HANDLER 1
-> 7z CALL TRIPLE

8: CALL PRINT SUB
9:

- OUT -output-=-===—— e e

stepped to SAMPLESMAIN\RLINE 7

- PROMPT -error-program-prompt---------—---—--oo—mmmmmmeee
DBG> STEP
DBG>

The SRC display, at the top of the screen, shows the source code of the module
(compilation unit) that is currently executing. An arrow in the left column
points to the next line to be executed, which corresponds to the current location
of the program counter (PC). The line numbers, which are assigned by the
compiler, match those in a listing file.

Note

BASIC line numbers are treated as text by the debugger. In this
chapter, line numbers refer to the sequential line numbers generated
by the compiler. When a program includes or appends code from
another file, the included lines of code are also numbered in sequence
by the compiler. These line numbers are on the extreme left of a listing
file. An explanation of the listing file format is in Chapter 2.

The PROMPT display, at the bottom of the screen, shows the debugger prompt
(DBG>), your input, debugger diagnostic messages, and program output. In
the example, the debugger commands that have been issued are shown.

The OUT display, in the center of the screen,